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Summary
Background Exercise can rapidly drop glucose in people with type 1 diabetes. Ubiquitous wearable fitness sensors are 
not integrated into automated insulin delivery (AID) systems. We hypothesised that an AID can automate insulin 
adjustments using real-time wearable fitness data to reduce hypoglycaemia during exercise and free-living conditions 
compared with an AID not automating use of fitness data. 

Methods Our study population comprised of individuals (aged 21–50 years) with type 1 diabetes from from the Harold 
Schnitzer Diabetes Health Center clinic at Oregon Health and Science University, OR, USA, who were enrolled into 
a 76 h single-centre, two-arm randomised (4-block randomisation), non-blinded crossover study to use (1) an AID that 
detects exercise, prompts the user, and shuts off insulin during exercise using an exercise-aware adaptive proportional 
derivative (exAPD) algorithm or (2) an AID that automates insulin adjustments using fitness data in real-time through 
an exercise-aware model predictive control (exMPC) algorithm. Both algorithms ran on iPancreas comprising 
commercial glucose sensors, insulin pumps, and smartwatches. Participants executed 1 week run-in on usual therapy 
followed by exAPD or exMPC for one 12 h primary in-clinic session involving meals, exercise, and activities of daily 
living, and 2 free-living out-patient days. Primary outcome was time below range (<3·9 mmol/L) during the primary 
in-clinic session. Secondary outcome measures included mean glucose and time in range (3·9–10 mmol/L). This trial 
is registered with ClinicalTrials.gov, NCT04771403.

Findings Between April 13, 2021, and Oct 3, 2022, 27 participants (18 females) were enrolled into the study. There was no 
significant difference between exMPC (n=24) versus exAPD (n=22) in time below range (mean [SD] 1·3% [2·9] vs 2·5% 
[7·0]) or time in range (63·2% [23·9] vs 59·4% [23·1]) during the primary in-clinic session. In the 2 h period after start of 
in-clinic exercise, exMPC had significantly lower mean glucose (7·3 [1·6] vs 8·0 [1·7] mmol/L, p=0∙023) and comparable 
time below range (1·4% [4·2] vs 4·9% [14·4]). Across the 76 h study, both algorithms achieved clinical time in range 
targets (71·2% [16] and 75·5% [11]) and time below range (1·0% [1·2] and 1·3% [2·2]), significantly lower than run-in 
period (2·4% [2·4], p=0∙0004 vs exMPC; p=0∙012 vs exAPD). No adverse events occurred. 

Interpretation AIDs can integrate exercise data from smartwatches to inform insulin dosing and limit hypoglycaemia 
while improving glucose outcomes. Future AID systems that integrate exercise metrics from wearable fitness sensors 
may help people living with type 1 diabetes exercise safely by limiting hypoglycaemia.

Funding JDRF Foundation and the Leona M and Harry B Helmsley Charitable Trust, National Institutes of Health, 
National Institute of Diabetes and Digestive and Kidney Diseases.

Copyright © 2023 The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY-NC-ND 
4.0 license.

Introduction
Type 1 diabetes (type 1 diabetes) is an autoimmune 
disorder that results in the destruction of the insulin-
producing β cells in the pancreas. People with type 1 
diabetes cannot produce sufficient insulin to maintain 
normal glucose concentrations and therefore must take 
exogenous insulin through either injection or an 
insulin pump. Automated insulin delivery (AID) 
systems are now commercially available and comprise a 
continuous glucose monitor (CGM), an insulin pump, 
and a control algorithm to automate insulin delivery 
based on sensed glucose.1–4 Commercial systems are 

hybrid systems requiring the person to estimate the 
amount of carbohydrates in their meals and enter this 
information into the AID to calculate meal insulin. 
Newer systems under development are fully automated 
and do not require carbohydrate entry.5 Although 
commercial AIDs have shown benefit, there is still 
need for improvement as many people on AID do not 
yet achieve the target of HbA1c below 7·0% and 
hypoglycaemia can occur, especially during times of 
high physical activity.6

A remaining challenge in glucose management for 
people with type 1 diabetes is maintaining optimal 
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glucose concentration during and following exercise to 
avoid hypoglycaemia.7,8 Glucose management during 
exercise is particularly challenging for people with type 1 
diabetes because the glucose response depends on many 
factors including type of exercise, duration, intensity, 
amount of insulin acting at the time of exercise, time of 
day, and whether exercise is competitive. Aerobic exercise 
is particularly problematic as it can cause sharp drops in 

glucose, especially when performed shortly after a meal 
when insulin concentrations are high.9 Compounding 
the problem is that there is substantial variation in 
glucose response during exercise, even when the exercise 
is done by the same person across similar days when all 
conditions of eating, insulin dosing, and exercise are 
consistent.10 Consensus statements provide guidelines to 
people with type 1 diabetes to help them adjust insulin 

Research in context

Evidence before this study
Before this study, there had not been a study showing that 
exercise metrics including heart rate and accelerometry collected 
from wearable fitness sensors can be incorporated into an 
automated insulin delivery (AID) system under free-living 
conditions. We reviewed publications in the area of incorporation 
of wearable fitness data into AID and automated multihormone 
delivery systems. We searched publicly available databases 
including PubMed without excluding by language or by date 
using the search terms “type 1 diabetes”, “exercise”, and 
“automated insulin delivery” or “artificial pancreas”. PubMed 
returned a total of 165 manuscripts, of which the majority were 
either review articles, studies done on commercial AID systems 
that do not incorporate exercise metrics as inputs to their 
algorithms, in silico mathematical models of exercise 
metabolism, or glucose forecasting models designed to work 
during exercise and evaluated post hoc. There has been 
preliminary work on incorporating heart rate, accelerometry and 
other measures from fitness wearables as continuous inputs into 
AID reported by our group as well as Breton, De Boer, Garcia-
Tirado and colleagues at the University of Virginia, and Turksoy, 
Cinar and colleagues at the Illinois Institute of Technology. The 
preliminary studies by Breton, De Boer, Garcia-Tirado and by 
Turksoy and Cinar were all done in an in-clinic setting under 
prescribed conditions including fixed meal times, exercise types, 
durations, and intensities. De Boer and colleagues showed that 
the percent time less than 3·9 mmol/L could be significantly 
reduced during an in-clinic study of a heart-rate informed AID 
system compared with a standard AID (0·5 +/– 2·1% vs 7·4 +/– 
12·5%, p=0·028). Turksoy and Cinar also showed, in their in-clinic 
studies, that heart rate and other exercise metrics could be 
incorporated into an AID to yield high time in range and low time 
in hypoglycaemia, though carbohydrate intake was required in 
59% of the exercise sessions to avoid hypoglycaemia. Garcia-
Tirado, Breton and colleagues described a new AID that used 
previous imposed exercise behavioural patterns done at specific 
times over several weeks to determine if the AID system could 
then anticipate and respond to exercise when it occurred in the 
future at these same times. The intervention when exercise was 
anticipated was done in an in-clinic study whereby they showed 
that the system could reduce hypoglycaemia compared with if 
the system did not anticipate the exercise and adjust dosing in 
advance. Although these studies showed a potential benefit of 
incorporating exercise data into the AID dosing and decision-
making, there had not yet been a study done under free-living 

conditions whereby exercise metrics were used to inform control 
decisions and modify insulin dosing. In our previous work, we 
had incorporated exercise as a metric for adjusting insulin dosing 
during exercise, but it required the user to acknowledge a prompt 
when exercise was detected by a wearable fitness sensor. 
Therefore, these preliminary systems were designed to work only 
during structured exercise periods as opposed to continuously 
throughout the day and especially during increased activity 
during daily living such as housework or yardwork. Thus, before 
the current study, there had not yet been a study showing that 
an AID system receiving continuous fitness data for adjusting 
insulin dosing is effective at maintaining clinical targets for 
glucose outcomes both during exercise and under free-living 
real-world conditions. 

Added value of this study
Results from the study presented in this manuscript show for 
the first time that exercise metrics collected from a wearable 
fitness sensor can be effectively used as an additional input into 
an AID system. Results indicate that during a two-hour period 
following the start of exercise, an AID that automatically 
incorporates real-time exercise metrics into dosing decisions 
can improve glucose outcomes compared with a system that 
requires a user prompt and makes adjustments to insulin 
dosing that are rule-based (eg, shut insulin off for a period of 
time and then reduce insulin delivery if exercise is detected and 
acknowledged by the user). Results across the full 76 h study 
period which included two days of free-living indicate that an 
AID that uses exercise metrics as a real-time input for 
calculating automated insulin dosing can help achieve clinical 
targets for glucose outcomes.

Implications of all the available evidence
This study provides evidence that can support the development 
of next-generation exercise-aware commercial AID systems. 
These exercise-aware AID systems might ultimately leverage 
the ubiquity of wearable fitness sensors for informing AIDs 
during an active lifestyle. An exercise-aware AID could 
ultimately help people living with type 1 diabetes improve their 
overall health through exercise while maintaining safety and 
improved glucose outcomes during and following exercise. An 
exercise-aware AID could also provide benefit for people with 
type 1 diabetes who are living an active lifestyle who might 
struggle with glucose management during physical activity that 
is not traditionally considered exercise (eg, housework, 
yardwork, commuting). 
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and carbohydrate intake before and during exercise if 
necessary.7,8 Some commercial AIDs offer the ability to 
change the glucose target before and during exercise, 
which can be helpful in avoiding hypoglycaemia during 
exercise.11 However, adjustment of the target is not 
automatic and requires the person to change the target, 
typically several hours in advance of exercise. Herein, we 
present results from a clinical study showing how an 
AID system can respond automatically to exercise 
quantified using a wrist-worn fitness watch.

Automating the detection of exercise using wearable 
sensors is now possible because of the ubiquity of 
commercial wearable sensors that quantify physical 
activity measures including heart rate and accelerometry. 
These sensors can be leveraged to compute various 
derived metrics including metabolic equivalent to task 
(MET), exercise start and stop, duration, intensity, and 
exercise type. Research has been done to assess the 
accuracy of these metrics12 which is critical for their 
potential use within AIDs that can then automatically 
adjust dosing in response to exercise. 

Once physical activity has been quantified, it needs to 
be properly used within a control algorithm to adjust 
insulin dosing. Turksoy and colleagues13 showed in a 
small in-clinic trial that various physical activity metrics 
including energy expenditure and galvanic skin 
impedance from a SenseWear Pro 3 (Pittsburgh, PA, 
USA) could be used to inform an AID. Participants in 
their 60 h in-clinic study performed a variety of exercises 
while using this multiple-input AID. Participants 
maintained a time in range of 69·9% with low time in 
hypoglycaemia, although 16 (59%) of 27 aerobic exercise 
sessions required participants to consume carbohydrates 
during exercise sessions to avoid low glucose. De Boer 
and Breton also showed, in an in-clinic study, that using 
heart rate as an additional input to an AID could 
significantly reduce the percent time in low glucose 
(<3·9 mmol/L) during exercise compared with an AID 
that did not use heart rate.14 Garcia-Tirado and colleagues 
described an AID that anticipated exercise from past 
behavioural patterns to estimate exercise in the future 
that could occur at the same time, showing in an in-
clinic study that the number of low glucose events could 
be reduced when the AID anticipates exercise.15 Our 
group has used exercise metrics from wearable sensors 
to inform an exercise-aware multihormone (insulin and 
glucagon) adaptive proportional derivative (exAPD) 
closed-loop control algorithm.16 This algorithm was 
used to reduce insulin and increase glucagon in 
response to the exercise onset. Clinical studies showed 
that use of this exAPD algorithm when used in dual-
hormone mode (insulin and glucagon) could help 
reduce hypoglycaemia substantially compared with 
when it was used in single-hormone mode.17 The exAPD 
algorithm detected when METs exceeded a threshold of 
4·0 then prompted the user to confirm exercise. After 
user confirmation, the exAPD would shut off insulin for 

30 min, and then reduce insulin delivery by 50% over 
the next 60 min. While the exAPD algorithm described 
above is helpful in reducing insulin during and 
following exercise, it required the user to interact with 
the system by responding to a prompt and confirming 
exercise. The exAPD algorithm was unable to respond 
automatically to physical activity that is not typically 
considered exercise, such as housework, yardwork, 
commuting by bike or walking, etc, because the intensity 
and duration thresholds of such activities might be 
lower than the intensity threshold for exercise detection 
used in exAPD. 

The normal functioning pancreas responds con-
tinuously to physical activity by reducing insulin 
secretion when physical activity increases to avoid 
hypoglycaemia. Herein, we describe an exercise-aware 
model predictive control algorithm (exMPC) that behaves 
more like the human pancreas by responding in real-
time to increases or decreases in physical activity to 
modulate the amount of insulin delivered. The algorithm 
has been described in earlier publications18,19 and a brief 
overview is in the appendix (pp 2–7). 

Methods 
Study design and participants
This study was a randomised, single-centre crossover 
study.

Participants were enrolled from the Harold Schnitzer 
Diabetes Health Center clinic at Oregon Health and 
Science University (OHSU). Inclusion criteria required 
diagnosis with type 1 diabetes for at least 1 year, age of 
21–50 years, physically willing and able to perform 
aerobic exercise, current use of an insulin pump for at 
least 3 months with stable insulin pump settings for at 
least 2 weeks, living with a person aged 18 years or older, 
living within 40 miles of OHSU, baseline HbA1c of 
10·0% or lower, and a total daily insulin requirement of 
less than 139 units per day, chosen to ensure that 
expected meal insulin could be fully delivered within 
20 min. Exclusion criteria included females of 
childbearing age who were pregnant or intending to 
become pregnant, cardiovascular disease, renal insuff-
iciency, liver failure, low haematocrit concentration, 
uncon trolled hyper tension, history of severe hypo-
glycaemia during past year, history of ketoacidosis 
during preceding 6 months, adrenal insufficiency, and 
active infection. 

The first visit to the clinic was a screening visit that was 
within 12 weeks before the 1 week run-in period; partici-
pants were consented via written informed consent, 
screened for eligibility, and HbA1c was measured along 
with an EKG. After eligibility was confirmed, participants 
performed a 1 week run-in when they received training 
on using the Dexcom G6 CGM (Dexcom, San Diego, CA, 
USA). Following the 1 week run-in, participants arrived 
at the OHSU inpatient research unit to start the first 76 h 
treatment.

See Online for appendix
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Complete protocol (Institutional Review Board protocol 
number 19973 and investigational device exemption 
(G200363) is provided in the appendix (p 7). 

Procedures
Since the exMPC algorithm was a new algorithm that 
had not been previously tested in humans, for safety 
reasons and as requested by the US Food and Drug 
Administration (FDA), the first eight participants used 
the exMPC only during the 12 h daytime period 
(0700–1900 h) in the clinic on days 1–3. During the 
evening hours, these participants used the iPancreas 
system in open loop only. After safety was confirmed for 
the first eight participants using exMPC, the remaining 
partici pants used exMPC during days 2 and 3 under free-
living conditions. The primary in-clinic session was on 
day 3 for these first eight exMPC studies, and day 1 for 
the remaining exMPC studies and for all of the exAPD 
studies.

During the primary in-clinic session of the study, 
participants ate self-selected meals at approximately 
0800 h, 1200 h, and 1700 h. Participants counted their 
own carbohydrates and entered these into the AID 
system using the iPancreas app; identical meals were 
consumed for the exMPC arm and the exAPD arms 
during the primary in-clinic session of the study. During 
the primary in-clinic session, participants performed 
activities of daily living at 1000 h that included 
vacuuming, washing dishes, folding laundry, etc, and 
performed a 30 min aerobic exercise video at 1500 h 
referred to herein as structured exercise. The exercise 
video included a 3 min warm-up and cool-down and 
workout designed to elicit a target heart rate of 70–80% 
of the age-predicted maximal heart rate. The hypothesis 
was that exMPC would lead to less percent time below 
range (time below range <3·9 mmol/L) than exAPD 
during the primary in-clinic session because exMPC was 
always using physical activity data to adjust the insulin 
and therefore responding to all activity during the day, 
not just structured exercise. Conversely, exAPD only 
adjusted insulin in response to structured exercise, but 
not throughout the day or during the activities of daily 
living. The exAPD also required the participant to 
respond to a prompt when physical activity exceeded 
4·0 METs whereas the exMPC algorithm did not require 
any interactions from the participant in response to 
physical activity changes. 

Participants were discharged from the clinic at 
approximately 2000 h. For days 2 and 3 of the inter-
ventional part of the study, participants used iPancreas at 
home under free-living conditions and were instructed to 
exercise on their own. On day 4 of the intervention, 
participants returned to the clinic to end the first arm of 
the study. After the first treatment visit, a washout period 
of 6 days to 10 weeks was done before performing the 
next 76 h intervention on either the exMPC or exAPD 
depending on the first intervention arm. 

Outcomes
The primary outcome measure was the percent time 
below range during the 12 h primary in-clinic session. 
Primary and secondary outcome measures were also 
assessed during the entire 76 h study and also during the 
2 h period immediately after the start of structured 
exercise on the primary in-clinic session. Glucose metrics 
were based on Dexcom G6 CGM data. Secondary outcome 
measures included the percent time in range 
(3·9–10 mmol/L), percent time above range (>10 mmol/L), 
total number of rescue carbohydrates required per day in 
response to hypoglycaemia (<3·9 mmol/L), mean 
glucose, percent time glucose was very low (<3·0 mmol/L), 
percent time sensed glucose was very high (>13·9 mmol/L) 
and mean amount of insulin per day. 

Randomisation and masking 
Participants were randomised using block randomisation 
with a block size of 4 to first use iPancreas running either 
exMPC or exAPD for the duration of the intervention. 
The study was non-blinded in that the study participants 
and the investigators knew the intervention that was 
being done.

Overview of iPancreas test platform
iPancreas (appendix p 41) is a modular, licensable, open 
access system to enable rapid prototyping of closed-loop 
and decision support algorithms and user interfaces for 
glucose management. The system (figure 1) comprises 
the custom iPancreas app running on a Samsung smart-
phone (Suwon-Si, Korea), a Dexcom G6 CGM, a research 
version Insulet Omnipod (Acton, MA, USA), a Polar 
M600 smartwatch (Kempele, Finland), and a custom-
developed cloud monitoring and data acquisition 
repository running on Amazon Web Services (Seattle, 
WA, USA). CGM data and M600 heart rate and 
accelerometry data are received wirelessly by the phone. 
The control algorithm calculates the amount of insulin to 
deliver and sends this information wirelessly to the 
Omnipod. iPancreas includes a simple meal bolus 
calculator.

Overview of the AID algorithms
The exMPC algorithm18–21 (appendix p 2) is a traditional 
MPC algorithm that uses a linearised version of a 
compartment model comprising nonlinear differential 
equations that represent kinetics and dynamics of 
subcutaneously delivered insulin, carbohydrates, and 
exercise. The insulin kinetics and dynamics models 
and the carbohydrate absorption model are described 
by Hovorka and colleagues22 and Wilinska and 
colleagues.23 The exercise model is described by 
Hernandez and colleagues24 and describes how glucose 
uptake and endogenous glucose production are 
impacted by METs. We calculated METs using 
accelerometer and heart rate data (appendix p 6). The 
METs data is provided as an input to the control 



Articles

www.thelancet.com/digital-health   Vol 5   September 2023 e611

algorithm every 5 min when a new insulin delivery 
micro-bolus is calculated. 

The exAPD algorithm17,20,21 is a proportional-derivative 
control algorithm that includes a fading history of past 
CGM to calculate the amount of insulin that should be 
delivered every 5 min.25 Because the exAPD algorithm 
does not include a model of metabolism, exercise metrics 
such as heart rate and accelerometry cannot be easily 
included as a continuous input. Instead, the exAPD 
algorithm calculates METs (appendix p 6), and if METs 
exceeds a threshold of 4·0, then the person using 
iPancreas will be prompted to confirm exercise. After 
accepting the prompt, insulin is turned off for 30 min 
and then reduced by 50% for 1 h. 

Artificial intelligence (AI)-augmented safety layer
Both exAPD and exMPC use a safety layer built into 
iPancreas. This includes an AI-based predictive low 
glucose suspend algorithm that uses a long-short-term 
memory (LSTM) neural network26 glucose forecasting 
algorithm to automatically shut off insulin if CGM is 
3·9–7·77 mmol/L and predicted to drop below 5 mmol/L 
within 30 min (appendix p 5–6). In addition, the maximum 
insulin delivery rate is limited to four times the user’s 
typical basal insulin infusion rate. Finally, maximum 
insulin delivery is limited such that insulin on board never 
exceeds 35% of the total daily insulin requirement.

Statistical analysis
For the primary outcome of percent time with glucose 
less than 3·9 mmol/L, we anticipated a mean paired 
difference of 1·2 (SD 2·5) with a kurtotic, double-
exponential distribution, based on previously published, 
closed-loop study data20 and simulations using the 
OHSU simulator.27 A sample of 24 participants provided 
80% power at the 0∙05 level of significance to detect a 
difference of that size or larger using a two-sided t test 
with an adjustment for the distribution. For normally 
distributed secondary outcomes, we had over 80% power 
to detect differences of 0·6 SD or greater using a two-
sided one-sample t test for the mean difference at the 
0∙05 significance level. Power calculations were done 
using Power Analysis and Sample Size Software 
(version 14; NCSS, Kaysville, UT, USA).

The primary study endpoint was percent of time with 
CGM below range (time below range, <3·9 mmol/L) 
during the primary in-clinic session. The hypothesis to 
be tested was whether the exMPC decreases time below 
range compared with the exAPD algorithm. For this, as 
well as for secondary endpoints, we used an intention-
to-treat analysis whereby all available data were included 
if the participant completed the primary in-clinic 
session. Mean paired differences were calculated as the 
differences between the two sample means with SD of 
the differences 

where CorrexMPC_exADP is the sample correlation between 
measurements in the two arms. Two-sided p values were 
calculated using a panel model for each endpoint with a 
random intercept for participant and indicator variables 
for the intervention, the sequence of the intervention 
(exMPC first or second, as a measure of potential 
carryover effects), and period (first or second). For the 
primary endpoint, which had non-normally distributed 
residuals, the standard errors for this model were 
calculated using bootstrap methods where participants 
were resampled with 1000 replications. For endpoints 
that were counts, we used negative binomial models. 
Other non-normally distributed outcomes were trans-
formed or bootstrapped, depending on the fit of the 
transformation. Analyses were completed using Matlab 
(Mathworks, Natick MA; version 21b) and Stata/IC (Stata 
Statistical Software, College Station TX; version 16.1).

This trial is registered with ClinicalTrials.gov, 
NCT04771403. 

Role of the funding source
Funders did not have a role in the study design, data 
collection, interpretation of results, or the writing of the 
manuscript. 

Figure 1: iPancreas system
The system comprises a Dexcom G6 CGM, an Insulet Omnipod along with a relay PDM, a Polar M-600 smartwatch 
with heart rate and accelerometer sensors, and a Samsung smartphone running the exAPD or exMPC control 
algorithms. AWS=Amazon Web Services. exAPD=exercise-aware adaptive proportional derivative. 
exMPC=exercise-aware model predictive control. PDM=personal diabetes manager.

Smartphone app

Insulet relay PDM

Polar M-600
fitness watch

AWS Cloud monitoring
and data storage

Dexcom G6

Insulet Omnipod

SDdiff =√SD²      +exMPC SD²      –exAPD (2 × CorrexMPC_exAPD × SDexMPC × SDexAPD)
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Results
Between April 13, 2021, and Oct 3, 2022, 27 adults 
(18 females) with type 1 diabetes from the Harold 
Schnitzer Diabetes Health Center clinic at OHSU were 
recruited into the study (table 1). Of the 27 participants 
screened, 25 (16 females) participated in the study 
(figure 2). 24 of 25 participants completed the exMPC arm 
and 22 of 25 participants completed the exAPD arm 
(figure 2). Reasons for not completing an arm included a 
software error that occurred and was fixed early on in the 
study (n=2), pump occlusion (n=1), and a participant 
withdrew from the study before starting the arm (n=1). 
There were no serious adverse events. The washout period 
was not correlated with time below range or time in range. 

Both exMPC and exAPD were similarly effective at 
using exercise data to prevent low glucose. For the 
primary outcome measure, participants using exMPC 
had similar time below range compared with participants 
using exAPD during the primary in-clinic session (1·3% 
vs 2·5%, difference –1·2 [SD 7·3]; p=0∙46; table 2). Time 
in range was similar for participants using the exMPC 
compared with the exAPD during the primary in-clinic 
session (63·2% vs 59·4%, difference 3·8 [29·8]; p=0∙49). 
Table 2 shows that there was no significant effect of the 
sequence of participants performing exMPC versus 
exAPD arms first. However, the order of performing the 
intervention regardless of intervention type as indicated 
by the column labelled period, was significant for time in 
range (increased in period 2) and time above range 
(decreased in period 2), indicating that the participants 
might have benefited from learning in the first period. 
Figure 3 shows that the exMPC algorithm tended to 
respond more to the activities of daily living during the 

morning time by turning down insulin whereas exAPD 
did not adjust insulin based on the activities of daily 
living since it was only designed to respond to prolonged 
vigorous exercise including the structured, user-
confirmed exercise video. The automated insulin on 
board calculated in the 2 h before the start of exercise was 
comparable for exAPD and exMPC (appendix p 44).

Low glucose (<3·9 mmol/L) occurred during the 2 h 
after the start of structured exercise during the primary 
in-clinic session for three participants in each of the 
exMPC and the exAPD arm. Table 3 shows that the 
duration of the low glucose during and following 
structured exercise was similar for exMPC compared 
with exAPD (1·4% vs 4·9%, difference –3·5 [15·4]; 
p=0∙29). Participants using exMPC had a significantly 
lower mean CGM compared with exAPD during this 2 h 
window after structured exercise in the primary in-clinic 
session (7·3 vs 8·0 mmol/L, difference –0·8 [1·4]; 
p=0∙023) and had similar time in very low glucose (0 for 
exMPC vs 0·57% for exAPD). One participant in the 
exAPD arm had a very low glucose (<3·0 mmol/L) in the 
2 h after the start of structured exercise whereas none of 
the participants experienced this in the exMPC arm. 
Participants using the exMPC had better glucose 
outcomes following in-clinic structured exercise as 
indicated by a significantly lower mean glucose (figure 4). 
Figure 4 also shows that although the exAPD shut off 
insulin completely when structured exercise was detected 

Participants (n=25)

Age, years 34·4 (8·8) 

Weight, kg 78·8 (13·5) 

Sex at birth

Male 9 (36%)

Female 16 (64%)

Race 

American Indian or Alaska native 1 (4%)

White 22 (88%)

More than one race 2 (8%)

Ethnicity 

Hispanic 0 

Non-Hispanic 25 (100%)

HbA1c 6·4% (0·6) 

HbA1c, mmol/mol 49·5 (4·9) 

Diabetes duration, years 22·8 (9·7) 

AID users 11 (44%)

CGM users 24 (96%)

Data are mean (SD) or n (%). AID=automated insulin delivery. CGM=continuous 
glucose monitoring. HbA1c=glycated haemoglobin A1c.

Table 1: Study participant demographics at baseline

Figure 2: Trial profile
exAPD=exercise-aware adaptive proportional derivative. exMPC=exercise-aware 
model predictive control.

12 completed exMPC arm
10 completed exAPD arm
      1 stopped after 6 h due to 
             communication error 
             with pod
      1 stopped due to pump 
            occlusion
      

2 excluded (did not meet criteria)
    1 diabetic ketoacidosis in
        last 6 months
    1 severe hypoglycaemic event 
       in last 6 months      
      

12 completed exMPC arm
      1 stopped after 8·3 h due to
         software bug
12 completed exAPD arm
      1 withdrew before start
          of exAPD arm
      

13 assigned to exMPC first
      

25 randomly assigned
      

27 participants assessed for 
      eligibility
      

24 included in the analysis
       12 exAPD
       12 exMPC
      

22 included in the analysis
       10 exAPD
       12 exMPC
      

12 assigned to exAPD first
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 exAPD exMPC Difference p value (exAPD 
vs exMPC) 

p value 
(sequence) 

p value (period) 

% time below range (<3·9 mmol/L)* 4·9 (14·4) 1·4 (4·2) –3·5 (15·4) 0·29 0·13 0·11 

% time in range (3·9–10·0 mmol/L)* 81 (22) 87 (17) 6 (26) 0·25 0·70 >0·99 

% high glucose (>10 mmol/L)* 14·2 (20·2) 11·5 (16·6) –2·7 (21·4) 0·50 0·29 0·30 

% very low glucose (<3·0 mmol/L) 0·57 (2·67) 0 ·· ·· ·· ··

% very high glucose (>13·9 mmol/L) 1·14 (3·68) 0 ·· ·· ·· ··

Mean glucose (mmol/L) 8·0 (1·7) 7·3 (1·6) –0·8 (1·4) 0·023 0·34 0·64 

Rescue carbohydrate  (count) 0·27 (0·55) 0·21 (0·41) –0·06 (0·77) 

Insulin (units)† 1·5 (0·9) 1·7 (2·0) 0·2 (1·6) 0·60 0·90 0·95 

Data are mean (SD) or difference (SD). The p value for sequence indicates the significance of the sequence of doing the exAPD versus exMPC first. The p value for the period 
indicates whether the order of doing the intervention, regardless of the type, was significant. exAPD=exercise-aware adaptive proportional derivative. exMPC=exercise-aware 
model predictive control. *p values estimated using bootstrapped standard errors. †p values from mixed effects regression model on insulin units.

Table 3: Outcome metrics comparing exAPD algorithm versus the exMPC algorithm in the 2 h after structured exercise started on the in-clinic day

exAPD exMPC Difference p value (exAPD 
vs exMPC) 

p value 
(sequence) 

p value (period) 

% time below range (<3·9 mmol/L)* 2·5 (7·0) 1·3 (2·9) –1·2 (7·3) 0·46 0·50 0·22 

% time in range (3·9–10·0 mmol/L) 59·4 (23·1) 63·2 (23·9) 3·8 (29·8) 0·49 0·41 0·047 

% high glucose (>10 mmol/L) 38·1 (21·4) 35·5 (24·4) –2·6 (28·4) 0·63 0·34 0·012 

% very low glucose (<3·0 mmol/L) 0·27 (0·87) 0 ·· ·· ·· ··

% very high glucose (>13·9 mmol/L) 8·0 (15·8) 7·5 (11·4) –0·5 (16·0) 0·87 0·65 0·24 

Mean glucose (mmol/L) 9·4 (1·6) 9·2 (1·6) –0·2 (1·8) 0·63 0·59 0·15 

Rescue carbohydrate  (count)† 1·09 (2·16) 0·58 (0·93) –0·51 (2·36) 0·33 0·31 0·33 

Insulin (units)‡ 21·2 (8·0) 21·4 (10·0) 0·3 (4·7) 0·94 0·60 0·60 

Data are mean (SD) or difference (SD). The p value for sequence indicates the significance of the sequence of doing the exAPD verus exMPC first. The p value for the period 
indicates whether the order of doing the intervention, regardless of the type, was significant. exAPD=exercise-aware adaptive proportional derivative. exMPC=exercise-aware 
model predictive control. *p values estimated using bootstrapped standard errors. †p values from negative binomial (count) regression model. ‡p values from mixed effects 
regression model on insulin units.

Table 2: Outcome metrics comparing the exAPD algorithm versus the exMPC algorithm during the primary in-clinic session

Figure 3: CGM data, insulin, and METs during the primary in-clinic session (0700–1900 h)
Middle plots show how the exMPC tended to reduce insulin earlier in the day when activities of daily living were taking place, whereas, the exAPD only shut off insulin 
when the structured exercise took place later in the day. CGM=continuous glucose monitor. exAPD=exercise-aware adaptive proportional derivative. exMPC=exercise-
aware model predictive control. MET=metabolic equivalent to task.
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by the algorithm and accepted by the user prompt, the 
exMPC algorithm did not completely shut off insulin for 
all participants as the exercise data were just one input to 
the algorithm, and in certain cases, a complete shut-off 
of insulin was not necessarily indicated to maintain 
optimal glucose outcomes. Insulin shut-off could have 
been caused by either the LSTM or the exercise detection. 
The carbohydrate intake before and during exercise was 
not different between the exMPC and exAPD arms for 
in-clinic exercise (appendix pp 42–43).

Across the entire 76 h study (table 4), exMPC and exAPD 
performed comparably in terms of time in range (71·2% 
vs 75·5%, difference –4·3 [16·4]; p=0∙13) and time below 
range (0·96% vs 1·30%, difference –0·33 [1·92]; p=0∙47). 
The use of exMPC over the full study duration required 
similar rescue carbohydrates compared with exAPD (0·65 
for exMPC vs 1·03 per day for exAPD; p=0∙14).

During the free-living exercise sessions at home 
(appendix pp 42–43), there was no statistically significant 
difference between the glucose change for exMPC 
(–21·5 mg/dL [43·8]) versus exAPD (–13·4 mg/dL [27·2]; 
p=0∙56). CGM at the start and end of exercise was 
comparable between the in-home exMPC and exAPD 
exercise sessions. Carbohydrate intake before in-home 
exercise was higher for exMPC compared with exAPD 
(7·7 g [8·5] vs 1·0 [3·7]; p=0∙01). No low glucose 
(<3·9 mmol/L) was observed during the in-home 
exercise for any participants on either algorithm.

In a post-hoc analysis, we considered the hypothesis 
that participants using either exMPC or exAPD would 
have better glucose outcomes compared with their usual 
care since many participants did not use an AID in their 
usual care. We compared glucose metrics from the 
intervention periods with the run-in week when the 

exAPD exMPC Difference P value (exAPD 
vs exMPC) 

P value 
(sequence) 

P value (period) 

% time below range (<3·9 mmol/L)* 1·30 (2·16) 0·96 (1·21) –0·33 (1·92) 0·47 0·53 0·98 

% time in range (3·9–10·0 mmol/L) 75·5 (10·7) 71·2 (16·1) –4·3 (16·4) 0·13 0·28 0·81 

% high glucose (>10 mmol/L) 23·2 (10·9) 27·8 (16·0) 4·6 (16·5) 0·10 0·31 0·80 

% very low glucose (<3·0 mmol/L) 0·13 (0·33) 0·05 (0·15) –0·08 (0·33)

% very high glucose (>13·9 mmol/L)* 4·5 (5·7) 7·0 (10·9) 2·5 (11·6) 0·27 0·17 0·92 

Mean glucose (mmol/L)† 8·5 (0·9) 8·8 (1·3) 0·32 (1·3) 0·17 0·34 0·56 

Rescue carbohydrate (count per day)‡ 1·03 (1·34) 0·65 (0·84) –0·38 (1·15) 0·14 0·17 0·59 

Insulin (units per day)§ 40·8 (16·0) 44·6 (22·6) 3·8 (11·4) 0·25 0·61 0·162 

Data are mean or difference (SD). The p value for sequence indicates the significance of the sequence of doing the exAPD versus exMPC first. The p value for the period 
indicates whether the order of doing the intervention, regardless of the type, was significant. exAPD=exercise-aware adaptive proportional derivative. exMPC=exercise-aware 
model predictive control. *p values estimated using bootstrapped standard errors. †p values from mixed effects regression model on inverse-transformed glucose (mmol). 
‡p values from negative binomial (count) regression model. §p values from model with log (insulin per day) as outcome.

Table 4: Outcome metrics comparing the exAPD algorithm versus the exMPC algorithm across the entire 76 h study

Figure 4: CGM data, insulin, and METs during the 2 h after the start of the primary in-clinic session structured exercise
The exercise-aware model predictive control (exMPC) algorithm data are shown on the right panel and the exercise-aware adaptive proportional derivative (exAPD) 
algorithm data are shown on the left panel. Notice that the exAPD shuts off insulin completely once structured exercise is detected while the exMPC will only shut off 
insulin completely if necessary. CGM=continuous glucose monitor. MET=metabolic equivalent to task.
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participants used their own insulin pump and CGM. 
Notably many participants (n=11) were using commercial 
AID as their current therapy during run-in. Participants 
had lower time below range compared with the run-in 
period (2·4% run-in, p=0∙002 comparing run-in with 
exMPC of 0·96% and p=0∙019 comparing run-in with 
exAPD of 1·3%). Time in range was higher for both 
algorithms compared with run-in but only significant for 
exAPD (69·2%, p=0∙52 comparing exMPC of 71·2% and 
p=0∙036 comparing exAPD of 75·5%). 

Discussion
Results indicate that the exMPC and exAPD algorithms, 
that both make use of exercise metrics, yielded 
comparable glucose outcomes. The exMPC yielded 
similar time in range and time below range compared 
with the exAPD during the primary in-clinic session. 
During the two 2 h after the start of the primary in-clinic 
session structured exercise period, the exMPC algorithm 
had better performance than the exAPD in terms of a 
significantly lower mean glucose without significant 
concomitant increases in time below range or very low 
glucose. The exMPC algorithm did not require any 
interaction from the participant in response to exercise, 
whereas the exAPD algorithm required the user to 
respond to the exercise announcement prompts. In this 
way, exMPC presumably required a lower burden than 
exAPD. 

This is the first study whereby exercise metrics (ie, 
heart rate and accelerometry) were used as continuous 
inputs to an AID system to modify insulin dosing under 
free-living, real-world settings. Previously, the exAPD 
algorithm was used in both single and dual-hormone 
closed-loop studies in in-clinic and outpatient free-living 
conditions. However, the adjustment to the insulin and 
glucagon dosing was done only after the user responded 
to a prompt indicating that exercise had been initiated. 
The exMPC algorithm did not require a user prompt and 
could respond throughout the day to exercise events. 
This enabled adjustment of insulin dosing even in 
response to activities of daily living (figure 3). The in-
home results (table 4) indicate that both the exMPC and 
exAPD performed well and comparably under free-living 
conditions and on average both were able to keep 
participants above 70% time in range and less than 4% 
time below range as recommended by the American 
Diabetes Association.28 There were no significant 
differences between the glucose outcomes for the two 
algorithms during the in-home exercise portions of the 
study and no low glucose observed during any of the in-
home exercise sessions. 

Early work on integrating exercise metrics into AID by 
Turksoy and colleagues13 and De Boer and Breton14 was 
done within an in-clinic setting. Other work assessed 
commercial AIDs during exercise. Breton and colleagues 
evaluated Control-IQ during a ski camp.29 Control-IQ and 
other commercial AIDs do not use physical activity as an 

input. They provide the option for adjusting the target 
glucose before exercise and during exercise to reduce 
insulin delivery, which can help avoid exercise-induced 
hypo glycaemia if done in advance.6,11 However, people 
often forget to make adjustments in advance or make 
inappropriate adjustments. Furthermore, people might 
be active throughout the day, but they might not consider 
any of these activities to be exercise. An AID system like 
exMPC that can automatically adjust insulin throughout 
all activities in the day could be helpful to people 
struggling with glucose management. Glucose has been 
shown to drop substantially even if basal insulin is 
suspended at the start of exercise30 and so anticipation of 
exercise could be critical for future applications.15 

Results indicate that use of exercise metrics collected 
from a commercially available wrist-worn fitness 
monitor can be used effectively by either exMPC or 
exAPD as a continuous input in an AID to achieve 
clinical glucose outcome targets28 for people with type 1 
diabetes. Limitations of this study are first that it was a 
short study. Future studies will evaluate the system over 
a longer period of time. In addition, the study was 
powered for 24 participants, but only 22 participants 
completed the exAPD arm. Furthermore, the SD of the 
outcome measures was larger in the study than the 
ones used to power the study. This was probably 
because a simulator was used to estimate the variance 
for the power analysis, which can yield smaller variance 
estimates than real-world data. The small number of 
participants and the larger variance could partially 
explain why statistically significant differences might 
not have been observed in the primary or secondary 
outcome measures assuming that these differences 
exist. Second, the performance of the algorithms on 
primary in-clinic structured exercise sessions was only 
evaluated on a single type of exercise (aerobic) and was 
only 30 minutes in duration. However, the system 
performed well during the free-living portion of the 
study when participants were instructed to perform 
exercise on their own on days 2 or 3 of the study. In the 
future, it will be important to evaluate the exMPC 
under a variety of exercise types (resistance, aerobic, 
interval), durations, intensities, and under fasting 
versus non-fasting states.31 Although the current study 
was not powered to explore factors contributing to 
glucose changes, a study by Riddell and colleagues32 
provides an analysis on a large cohort of people with 
type 1 diabetes (n=497) exercising under free-living 
conditions. They identify baseline glucose, rate of 
change of glucose before exercise, insulin-on-board at 
start of exercise and other factors related to changes in 
glucose during aerobic, resistance, and interval 
exercise. Third, for safety reasons required by the FDA, 
we needed to include an in-clinic evaluation period for 
the exMPC, which potentially introduced noise into the 
findings because these first eight participants did the 
exercise on the day 3 in-clinic session. When evaluating 
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the impact of doing the first eight exMPC participants 
on day 3, we found that these participants had higher 
time in range and lower time below range than the 
following 16 participants who did the in-clinic exercise 
on day 1; the p value did not reach significance 
(p=0∙063). Future studies will not require this type of a 
study design. Fourth, the study population from this 
study was generally well controlled with a mean HbA1c 
of 6·4%. Future studies will need to evaluate these 
algorithms in a more broadly representative population. 
A final limitation is that the results presented here are 
for only one type of fitness watch, the Polar M600. In a 
previous study,12 we found that accuracy of different 
fitness watches including the Garmin and the Fitbit 
watches, were comparable. If fitness watches are to be 
used in future closed-loop systems, it will be important 
to carefully assess the accuracy of heart rate and 
accelerometer data. 
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