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Abstract 

Technological advancements and the COVID-19 pandemic have catapulted process virtualization in many 

sectors, including healthcare, where telehealth has enabled the significant digital transformation of care 

delivery. Although telehealth has been proposed as a potential solution to improve access to care and restrain 

runaway healthcare costs, it can increase spending if telehealth visits lead to new types of resource utilization. 

Drawing on the lens of Process Virtualization Theory, we study the impact of telehealth on healthcare 

utilization by examining visit-level patient data of telehealth use in facilitating e-visits with healthcare 

providers. On average, a telehealth visit reduces the number of future outpatient visits by 13.6% (or 0.15 

visits), equal to a reduction of $239 in total cost within 30 days after the visit. Our results suggest that the 

benefits of telehealth use are observed primarily among diseases with high virtualization potential. 

Specifically, patients with mental health, skin disorders, metabolic, and musculoskeletal diseases, exhibit a 

significant reduction of 0.21 outpatient visit per quarter (an equivalent cost reduction of $179) when they are 

treated via telehealth, suggesting a substitution effect with respect to traditional clinic visits. Our research 

identifies the boundary conditions that determine the nuanced impact of telehealth on care utilization and 

shows that its effectiveness depends on the process virtualization potential of different diseases. Our findings 

have several practical and theoretical implications for fostering telehealth use in a value-based healthcare 

environment, especially for diseases with high virtualization potential where telehealth use should be promoted 

to bend the cost curve. 
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1 INTRODUCTION 

As the use of digital technologies has hastened in recent years, physical interactions are increasingly 

being replaced by virtual interactions, enabling the virtualization of business processes (Fiol and O’Connor 

2005, Gartner 2022). Global investment in the digitization and virtualization of business processes has reached 

$1.8 trillion in 2022, an increase of 17.6% over 2021, and is projected to grow 16.6% annually between 2021-

2025 (IDC 2022). Notable examples of successful digital transformations that gave rise to process 

virtualization include online shopping, digital marketing, online dating, and distance learning (Berguerand 

2022, Fertik 2020, Sickler 2022, Weiler 2020). However, until recently, the healthcare sector in the United 

States has been slow to adopt such digital transformations for healthcare processes, making it one of the last 

avenues yet to realize the full potential of process virtualization.  

However, the COVID-19 pandemic has accelerated the digital transformation of healthcare, driven by a 

shift to virtual care (Landi 2021). This shift triggered a total of $21.3 billion in investments toward digital 

health startups in 2021 in the United States, a trend that is projected to continue in the future (Landi 2021). 

Telehealth has been the primary catalyst behind the virtualization of healthcare with the goal of improving 

healthcare access, costs, and outcomes (Bestsennyy et al. 2021). Telehealth can help transform traditional 

healthcare delivery and increase access to specialized care, helping patients to monitor lifestyle changes and 

providers to triage patients in real-time. Bestsennyy et al. (2021) estimated that up to $250 billion in US 

healthcare spending could be substituted with more cost-effective telehealth. However, virtualization of care 

through telehealth is not straightforward, as evidenced by a recent survey which reported that 64% of 

physicians do not favor telehealth for reasons ranging from convenience to experience (Cordina et al. 2022). 

In practice, telehealth has been mainly utilized for treating specific diseases, such as psychiatry, 

dermatology, and endocrinology (Cordina et al. 2022). Since care virtualization via telehealth may be subject 

to frictions caused by medical requirements, telehealth may not be suitable for every disease class. However, 

the reasons as to why telehealth has not been adequately utilized for patient care remain largely unanswered 

(Bestsennyy et al. 2021). Similarly, research on care virtualization to treat patients with specific conditions has 
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been lacking, except for a few types of mental health and drug abuse conditions (Huskamp et al. 2018). While 

understanding the requirements of care virtualization through telehealth is crucial, the economic impact of care 

virtualization is also of interest to policymakers and practitioners (Adler-Milstein et al. 2014, Overby et al. 

2010, Rajan et al. 2019). In recent years, government agencies have called for proper justification of the 

benefits of telehealth use, as observed in a report by the U.S. Senate Committee on Finance, which argued that 

“…. traditionally telehealth has been viewed as a tool to improve access to services, but interest is growing to 

see if telehealth has the potential to reduce health care costs ....” (Senate.gov 2015). A comprehensive analysis 

of the impact of telehealth and the mechanisms involved in virtualizing care through telehealth, is long overdue 

and requires systematic empirical investigation. At a broader level, the information systems literature has also 

called for more research to investigate virtualization of e-businesses, especially along three dimensions: (a) 

understand the virtualization of processes, (b) how virtual processes are likely to be used, and (c) the 

consequences of process virtualization (Overby et al. 2010). In our study, we address this call in the context of 

telehealth and pose our research questions as follows: 

RQ1: What is the impact of telehealth-enabled process virtualization on future healthcare utilization, as 

measured by the number of outpatient visits and costs? 

RQ2: Does the impact of process virtualization through telehealth vary based on the degree of 

virtualizability of different disease types? i.e., How does variation in the process virtualizability 

of different diseases impact the link between telehealth-enabled process virtualization and 

healthcare utilization? 

RQ3: What information technology capabilities of telehealth facilitate the differential impact of 

telehealth on future utilization? 

Our research objectives are threefold. First, we study the implications of process virtualization in the 

context of telehealth. Specifically, we unveil the impact of telehealth use on healthcare utilization with a focus 

on two outcomes of outpatient care: (a) the number of outpatient visits and (b) total visit costs. Second, we 

reveal how telehealth achieves process virtualization by drawing on the lens of Process Virtualization Theory 
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(PVT). Since telehealth represents a specific instance of process virtualization, we focus on three dimensions - 

reach, representation, and monitoring - to explain the underlying mechanisms that enable process virtualization 

of specific disease types (Overby 2008). We argue that the interplay between disease types and information 

technology (IT) capabilities, can impact the degree of process virtualization. Third, we analyze the differential 

impact of telehealth based on the virtualizability of different disease types. Unlike previous research that 

primarily focused on hospital-level, telehealth adoption or survey methods to assess the role of telehealth, we 

construct granular measurements of actual telehealth use for each patient visit by leveraging a unique patient 

dataset from Maryland. This allows us to measure the impact of telehealth on process virtualization at the 

patient level. Hence, our research addresses the call by Tuckson et al. (2017, p. 1587), who observed that “…. 

enhanced evidence is required to address gaps in telehealth-related clinical performance ….”    

Our findings indicate a significant reduction in healthcare utilization after telehealth use. Specifically, 

we observe a 13.6% reduction (or 0.15 visits) in the number of outpatient visits, equivalent to $239 in total cost 

reduction, within 30 days after provisioning telehealth. Our results reveal that these improvements can be 

attributed primarily to disease types with care processes that are more amenable to virtualization. Among 

patients with highly virtualizable diseases, we observe a 12.2% (or 0.21 visit) reduction in the number of future 

outpatient visits, equivalent to a cost reduction of $179.5 within 30 days. Our findings reveal a critical 

boundary condition related to telehealth use, i.e., substitution effect for patients with high virtualizability 

diseases using telehealth. We find empirical evidence supporting telehealth’s representation and monitoring 

abilities that effectively reduce future healthcare utilization. Specifically, telehealth’s ability to provide virtual 

representation through integration of sensory and relationship features for specific diseases, such as mental 

health, skin disorders, metabolic, and musculoskeletal diseases, significantly reduces future healthcare 

utilization. Furthermore, the ability to monitor patients and control disease progression due to telehealth’s 

monitoring capability leads to displacement in the timing of healthcare utilization among chronic disease 

patients (Thompson et al. 2020). However, we do not observe a significant impact of telehealth’s reach 

capability in reducing utilization, consistent with earlier findings on its lack of effectiveness in reaching 
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patients who live farther away from the point of care (Chao et al. 2021, Yeow and Goh 2015). Our findings 

reveal essential tradeoffs in provisioning telehealth across disease types with respect to their virtualizability.  

Our research provides several research and policy prescriptions. First, our study represents one of the 

first attempts to comprehensively analyze the economic impact of process virtualization in the context of 

telehealth. Second, we demonstrate the differential and nuanced impact of telehealth on resource utilization for 

distinct disease types, which varies based on their degree of virtualizability. Third, our research empirically 

tests the tenets of PVT and implies that not every aspect of technology addresses the requirements of process 

virtualization. In a telehealth context, advocates of virtualization should carefully analyze their contextual 

boundary conditions and resources, as IT cannot entirely reduce resistance to virtualization. However, our 

results provide evidence that telehealth can be highly effective in monitoring disease progression, thereby 

substituting in-person visits with lower care utilization and costs. Our findings are critical for policymakers to 

develop new reimbursement models and promote telehealth adoption for specific diseases and conditions, as a 

means to bend the cost curve and support the shift toward outpatient and home-based care services. 

2 BACKGROUND 

First, we provide a brief background of process virtualization and prior studies on telehealth and identify the 

critical research gaps in our understanding of the underlying mechanisms behind virtualization in healthcare.  

2.1 Process Virtualization 

The proliferation of digitization and need to serve clients across time and space have led organizations to 

migrate their processes to virtual environments (Overby et al. 2010). Process virtualization occurs when the 

physical interaction between people and objects is replaced by virtual interactions (Fiol and O’Connor 2005). 

For instance, patients can visit their doctors virtually through a telehealth platform, students can attend courses 

virtually from off-campus locations, and customers can use mobile devices to shop online without going in 

person to stores (Berguerand 2022, Sickler 2022, Weiler 2020). Although anecdotal evidence suggests that 

process virtualization substantially improves quality of life, improves access to untapped resources, and 

promotes a more engaged society, research in this area is still nascent. Understanding how to design and use 
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virtual processes and the implications of transitioning to virtual processes are of great importance to 

practitioners and policy makers to maximize and democratize the potential benefits to society. 

Prior studies in the IS literature have considered the antecedents and consequences of process 

virtualization in various contexts. For instance, Miscione (2007) examined the factors impacting telemedicine 

adoption in rural areas, while Piccoli et al. (2001) study virtualization of educational processes and reported 

similar learning outcomes compared to classroom settings. Bose and Luo (2011) identified the factors 

contributing to a firm’s virtual green IT initiatives. Balci (2014) studied the impact of perceived process 

requirements on airline online check-in processes, while Graupner and Maedche (2015) found that sensory and 

control requirements are vital influencers of virtualization in online banking processes. Ofoeda et al. (2018) 

also showed that process requirements impact virtualization of government-to-citizen engagement processes.  

Overby (2008) established the foundation of Process Virtualization Theory (PVT) to understand factors 

affecting the virtualizability of processes in several ways. First, PVT examines the characteristics of a process 

instead of solely focusing on outcomes, such as IT adoption. Second, PVT extends the contextual setting of 

media richness theory by involving person-to-object interactions. Third, PVT seeks to understand why a 

process may be amenable to virtualization. However, there remain several gaps in our understanding of how 

processes are virtualized, which tasks should be virtualized, whether users substitute or complement physical 

processes with virtualization, and whether the benefits of virtualization are equally realized across users and 

tasks. Our objective is to enrich our understanding of process virtualization using the context of telehealth use 

for patient care. We specifically focus on whether virtualization in healthcare can help improve outcomes (e.g., 

outpatient visits and costs), for which tasks (e.g., diseases) and under what conditions can virtualization 

achieve better results, and whether the proposed IT constructs (i.e., reach, representation, and monitoring) of 

PVT can help explain the underlying mechanisms of care virtualization processes.    

2.2 Telehealth  

Telehealth is defined as “the use of electronic information and telecommunication technologies to 

support long-distance clinical health care, patient and professional health-related education, health 
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administration, and public health.”1 Telehealth enables such processes through electronic platforms either 

using proprietary vendor applications, such as American Well, MD Live, Teladoc, and integrated EHR 

applications (e.g., patient portals), or through general-purpose platforms, such as FaceTime, Skype, and Zoom. 

In recent years, the U.S. government has provided incentives to create and expand providers’ virtual 

consultation capabilities. The Federal Communications Commission (FCC) established a COVID-19 

Telehealth Program with $200M in funding to help eligible healthcare providers deliver care to patients in a 

virtual setting.2 In March 2020, the Centers for Medicare & Medicaid Services (CMS) broadened access to 

telehealth services through its CMS 1135 waiver so that beneficiaries could receive a wide range of services 

virtually without traveling to a healthcare facility (CMS.gov 2020). In our research context, we focus on 

telehealth visits where patients and providers communicate through a synchronous virtual video conferencing 

platform. This type of service represents the predominant form of virtual visits, accounting for 24% of all 

office visits and 35% of home health services (Bestsennyy et al. 2021).3 

Although telehealth has existed for over two decades, the literature lacks empirical evidence to justify 

the economic and clinical impact of care virtualization through telehealth based on longitudinal analyses of a 

large patient population (Adler-Milstein et al. 2014). To highlight the current state of the telehealth literature, 

we present a comprehensive summary of the prior literature in Table A1 in the Appendix. In this comparative 

analysis, we consider the types of telehealth services (e-visit via video, phone, or message, tele-triage, 

telemonitoring, e-health, and patient portal use), use versus adoption, mode of telehealth (synchronous vs. 

asynchronous), outcomes, disease types, research method (empirical, modeling, or mixed-method), data 

context, study design (cross-section or panel), and the length of study.  

We observe that earlier findings span a diverse range of studies, based on different types and modes of 

telehealth services and diseases, and provide mixed evidence. Some studies used small-sample data with short 

 
1 https://www.hrsa.gov/rural-health/topics/telehealth/what-is-telehealth, last accessed on 02/04/2023 
2 https://www.fcc.gov/covid-19-telehealth-program-invoices-reimbursements, last accessed 02/04/2023. 
3 Telehealth provides three types of IT-enabled capabilities: (a) real-time, two-way interaction between a patient and 

healthcare provider via audiovisual technologies; (b) store-and-forward systems that transmit patient health data, such as 

X-rays and radiology images, to healthcare providers and specialists; and (c) remote-monitoring capabilities involving 

collection and transmission of personal and medical patient data to healthcare providers at distant locations (AHA 2015). 
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observation periods or were based on a telehealth use at a single provider (Bakitas et al. 2020, Hwang et al. 

2022, Kelley et al. 2011). Others used cross-sectional data only (Rodriguez et al. 2021, Weiner et al. 2021), 

while several studies evaluated pilot implementations (Miscione 2007, Paul and McDaniel 2004, Yeow and 

Goh 2015), or focused only on specific diseases (Bao et al. 2020, Erdogan et al. 2018, Goh et al. 2016, Li et al. 

2021, Liu et al. 2018, Savoli et al. 2020). We also observe that many studies considered different types of 

telehealth other than synchronous virtual visits, such as online social support (Yan and Tan 2014), tele-

radiology (Körpeoğlu et al. 2014), remote monitoring (Singh et al. 2011), tele-triage (Çakıcı and Mills 2021), 

and tele-cystoscopy (Erdogan et al. 2018). Our study represents one of the first attempts to focus on the most 

generic version of telehealth services - e-visit via video – supported by a strong theoretical framework based on 

the salient IT constructs in PVT, i.e., reach, representation, and monitoring capabilities of virtualization.  

Our study examines the impact of care virtualization through telehealth at the patient-visit level, based 

on statewide longitudinal data of telehealth use, across a large patient population. Further, our study focuses on 

future healthcare utilization, based on the number of outpatient visits and total costs within the 30-days 

following a telehealth visit. This is a crucial distinction in terms of its ability to assess the actual economic 

value of common types of virtual care provisioning, as highlighted in the panel labeled “E-visit: Video” shown 

in the last row of Table A1. For example, prior studies have explored the impact of telehealth use on 

emergency department length of stay (Sun et al. 2020), service rate (Rajan et al. 2019), patient satisfaction (Li 

et al. 2020), diagnostics (Serrano and Karahanna 2016), healthcare process outputs (Yeow and Goh 2015), and 

the number of follow-up visits (Li et al. 2021). Most of these studies do not comprehensively capture the 

economic value of video-based, e-visits as the mode of care delivery. 

2.3 Telehealth and PVT 

Telehealth represents a specific instance of process virtualization in a healthcare setting. PVT lays the 

foundation to study “process virtualizability,” which is defined as the amenability of a process to being 

conducted without the physical presence of actors and objects. PVT proposes four main constructs that 

influence process virtualizability: sensory, relationship, synchronism, and identification and control 
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requirements (Apte and Mason 1995). These requirements can negatively impact process virtualizability by 

increasing resistance and creating friction for a process to be conducted virtually (Overby 2008). For instance, 

a clinical consultation involves information exchange between a patient and their provider for diagnosis and 

treatment. In a physical context, the four requirements are immediately satisfied, ascertaining an effective 

medical consultation process. However, these requirements are harder to satisfy in a virtual consultation setting 

since the relationship between a patient and their care provider is more difficult to establish (White et al. 

2022), thereby lowering the likelihood of process virtualizability. However, the technological capabilities of 

telehealth enable greater process virtualization with low friction. Therefore, we expect that telehealth use is 

likely to substitute in-person visits and lower future healthcare utilization.  

First, sensory requirements convey the level of fully equipped sensory experience needed to perform a 

process, such as tasting, seeing, hearing, smelling, touching, and emotions. In a healthcare context, for 

example, diagnosing heart murmurs in kids mostly requires physical examination using stethoscopes. Moving 

the process to a fully virtual environment is difficult because providers can only use two of their five senses—

seeing and hearing. Second, PVT defines relationship requirements as the need for social or professional 

interaction among participants to build trust, friendship, and acquire knowledge. If a process requires higher 

relationship requirements, it will encounter more difficulty in transmitting a set of standard communication 

cues, such as gestures, posture, and inflection, if virtualized (White et al. 2022). Third, synchronism 

requirements pertain to the degree of alignment and bandwidth for smooth communication without delay. 

While synchronism can be readily established in a physical process, it is not straightforward in virtual 

processes since latency related to wait times can add friction to virtualization (Kamarainen and Punakivi 

2004). Finally, identification and control requirements address the need for authentication of process 

participants and control over their behavior. This is because virtual processes suffer from identity spoofing and 

control problems, such as difficulty in influencing participant behavior or monitoring participants (Friedman 

and Resnick 2001). Overall, these requirements  collectively influence the amenability of a business process 

toward virtualization.  
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So how can telehealth help to facilitate process virtualization? PVT conceptualizes IT as an enabler of 

virtualization by mitigating the resistance to process requirements through three IT capabilities: representation, 

reach, and monitoring (Overby 2008). Representation conveys telehealth’s capability to represent relevant 

information via simulations of actors and objects, their properties, profiles, and characteristics as information 

moves from the physical into the virtual world. With representation, IT can integrate sensory and relationship 

requirements and reduces their negative impact on process virtualization. For instance, representations of 

patient symptoms and medical conditions can be conveyed through a telehealth consultation to a distant 

provider so that patients can be diagnosed virtually.  

Reach is conceptualized as the capability to allow process execution across time and space, allowing a 

process with high relationship and synchronous requirements to be virtualized. Telehealth can expand 

geographic reach, thereby helping patients in rural settings access healthcare resources (Yeow and Goh 2015) 

and allow synchronous execution of medical counseling (Chao et al. 2021). Furthermore, telehealth can 

improve access to patients who may otherwise miss appointments due to long wait times for in-person visits 

(Osadchiy and Kc 2017).   

Finally, the monitoring capability of IT serves as a mechanism to authenticate participants and track 

their activities and helps reduce resistance within processes that exhibit high identification and control 

requirements. For example, telemonitoring helps patients to improve their health status by virtually connecting 

them to providers, sharing medical assessments, and establishing virtual counseling to monitor disease 

progression (Singh et al. 2011). In this manner, IT can help mitigate the resistance to sensory, relationship, 

synchronism, and control requirements in healthcare. 

3 THEORY FOUNDATION 

In explaining how telehealth use changes healthcare utilization at a high level, our study builds on the 

theoretical underpinnings of Process Virtualization Theory (PVT). We are interested specifically in (a) the 

boundary conditions under which virtualization of medical processes can be achieved, and (b) how telehealth-
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enabled virtualization can impact healthcare utilization. In this section, we will theorize and present our 

hypotheses based on the research questions identified in the introduction. 

3.1 Telehealth and Healthcare Utilization  

In the U.S., certain geographical areas suffer from a shortage of primary care physicians, specialists, 

and/or access to primary care (Gellis et al. 2014). Lack of access to outpatient clinics may delay preventive 

care, which can aggravate health conditions leading to a higher rate of future readmissions or ER visits 

(Kangovi and Grande 2011). However, Darkins et al. (2008) reported that veterans who joined home telehealth 

programs experienced a 25% drop in bed-days of care and a 19% reduction in hospital admissions. Similarly, 

Zhou et al. (2007) documented a 6.7% to 9.7% reduction in adult primary care outpatient visits among patients 

who adopted electronic messaging with their providers. Hence, we argue that telehealth plays an essential role 

in providing virtualized care and bridges the digital health divide due to its superior reach in connecting 

underserved patients to primary (or specialty) providers.  

Telehealth also offers remote monitoring capabilities (through sensors and mobile diagnostic systems), 

patient education, and virtual visits with providers via phone or video calls (Dorsey and Topol 2016). For 

instance, virtual telemonitoring of obstetric patients with COVID-19 is an effective surveillance tool as 

telehealth provides close monitoring and enables a smoother transition to virtual evaluation (Krenitsky et al. 

2020). Preventive home monitoring of patients with chronic obstructive pulmonary disease (COPD) exhibited 

reduced hospital admission rates (Dinesen et al. 2012). Hence, we posit that the monitoring capability of 

telehealth can help improve patient health status which, in turn, can lead to reductions in future utilization.  

Research supports care virtualization in occupational therapy settings as therapists mainly use 

assessments and perform interventions through conversations with patients and their families (Cason 2014), 

supporting the efficacy of telehealth’s representation capability. Similarly, telehealth use for mental disorders 

and substance abuse has proven to be a promising alternative to in-person consultations due to its ability to 

represent patient symptoms via teleconferencing and support for patient privacy considerations (Kinley et al. 

2012). Telehealth has also been reported to improve relationship requirements as it can reduce burnout and 
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stress among nursing staff by streamlining patient conversations and managing patient meetings more 

effectively (HIMSS TV 2020). Hence, telehealth can effectively manage sensory and relationship requirements 

of treatments through its representation capability.  

We argue that telehealth can influence healthcare resource utilization by narrowing the digital health 

divide, fostering patient self-care management, and establishing communication between providers and 

patients (Bashshur et al. 2014). Hence, telehealth may reduce the need to seek future outpatient care, thereby 

resulting in lower utilization of clinical services. Hence, we hypothesize that, 

H1: Patients who undergo telehealth visits are more likely to exhibit a reduction in their utilization of future 

outpatient services compared to patients who do not use telehealth. 

3.2 Virtualizability across Disease Types   

During clinical consultation, a patient’s underlying health condition can determine the extent of process 

requirements and their interplay with IT capabilities. For instance, the adoption of mobile communication 

technologies by nurses is affected by the level of patient or disease identification and the availability of current 

information at the point of care (Junglas et al. 2009). Overby et al. (2010) argued that tasks, such as initial 

screening, can be good candidates for telemedicine, while other tasks, such as delivery of a negative diagnosis, 

might be poor candidates. Hence, we consider the degree of virtualizability of different disease types as a 

contextual factor and study the heterogeneous impact of disease types. 

The four requirements of PVT are influenced by the characteristics of participants and disease types. 

While a preliminary conversation with providers may involve discussion of a patient’s medical history, pre-

existing conditions, allergies, and current medications, they carry low sensory, relationship, and control 

requirements, compared to in-person patient exams which may necessitate greater requirements depending on 

the disease. For example, diseases that require visual inspection or verbal communication, such as psychiatry, 

dermatology, and endocrinology, have lower sensory requirements, compared to diseases that necessitate 

physical examination for diagnoses (e.g., appendicitis, heart murmur, arthritis, and arthralgia). Hence, disease 

types and care requirements are likely to impact the virtualizability of care processes.   
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High virtualizability diseases tend to exhibit lower resistance to virtualization since these diseases are 

better suited to telehealth's reach, representation, and monitoring capabilities. For instance, mental health 

patients require regular follow-up care and monitoring to monitor disease progression (Anker et al. 2011, 

Wakefield et al. 2008). Although mental health illnesses may have greater synchronism and control 

requirements, these may be offset by proper use of telehealth’s monitoring and reach capabilities. Prior 

research has reported that telepsychiatry patients experience 50% lower depression scores and significantly 

fewer ER visits after reinforced self-efficacy and depression counseling through telehealth (Gellis et al. 2014).  

On the other hand, telehealth use among patients with other types of diseases may serve as a gateway to 

future offline or in-person clinic visits due to the limitations imposed by their process requirements (Bavafa et 

al. 2018). Some diseases progress rapidly and are accompanied by distinct symptoms that require urgent care. 

For instance, appendicitis, heart arrhythmia, and abnormal uterine bleeding may require in-person physical 

examination because granular patient information processing under high sensory requirements cannot be 

sufficiently conveyed through telehealth. For instance, Palen et al. (2012) observed that inpatient 

hospitalizations and ER visits among patients with low virtualizability diseases increased by 38% and 7%, 

respectively, following the adoption of secure electronic communication with providers.  

In this research, we analyze the differential impact of virtual care processes associated with high and low 

virtualizability diseases. Since low virtualizability diseases typically require substantial interventions for which 

telehealth may not be suitable, telehealth may instead serve as a gateway to in-person care (Bavafa et al. 2018). 

However, for patients with diseases with high virtualization potential, such obstacles can be better handled 

through the representation, reach, and monitoring capabilities offered by telehealth. Therefore, we expect 

telehealth to reduce utilization more among patients with high virtualizability diseases compared to those with 

low virtualizability diseases. 

H2: Patients who use telehealth for high virtualizability diseases are more likely to exhibit future reduction in 

healthcare utilization compared to patients who use telehealth for low virtualizability diseases. 
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3.3 Telehealth Capability and Process Virtualization 

Telehealth’s efficacy relies on the quality of telecommunication infrastructure and the extent to which it 

fulfills the requirements of process virtualization. In this respect, telehealth’s greater representation, reach, and 

monitoring capabilities can be more conducive to virtualize the treatment of high virtualizability diseases. In 

other words, the relationship between disease type and telehealth’s capabilities (i.e., representation, reach, and 

monitoring) can impact the degree of digitization and process virtualization. High virtualizability diseases 

generally exhibit well-established and standardized protocols based on clinical knowledge. Such diseases 

exhibit low sensory requirements and include behavioral interventions such as promoting healthy eating, 

exercise, meditation, smoking, and alcohol cessation counseling (Evert et al. 2013).  

Similarly, the representation capabilities offered by telehealth are more conducive for diseases with low 

sensory requirements. For instance, telehealth has shown promising results in Australia and the U.S., where 

doctors use tele-dermatology to connect with distant patients and provide specialized diagnosis, representing 

an effective and safe approach to virtual treatments (Yeroushalmi et al. 2021). For neuromuscular and 

musculoskeletal diseases, telehealth can reduce the sensory requirements with the help of a telepresenter, who 

follows a specialist’s directives during virtual physical exams, highlighting the role of telehealth’s 

representation capability (Howard and Kaufman 2018). Furthermore, telehealth’s reach can improve the lack 

of access to healthcare resources for rural patients and enable synchronous medical counseling (Chao et al. 

2021, Yeow and Goh 2015). Hence, telehealth facilitates treatment of high virtualizability diseases more 

effectively through its reach, representation, and monitoring capabilities, which in turn helps reduce the need 

for future visits. We posit that telehealth’s reach, representation, and monitoring capabilities facilitate 

virtualization of care processes resulting in a reduction in care utilization for high virtualizability diseases.4 

H3: For patients with high virtualizability diseases, telehealth’s representation, reach, and monitoring 

capabilities facilitate the virtualization of care delivery, leading to a reduction in healthcare utilization.  

 
4 We do not hypothesize a similar relationship for low virtualizability diseases as it is not meaningful to test the effect of 

telehealth on care delivery processes with low potential for virtualization.  
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4 RESEARCH DATA 

We obtained our research dataset from the Maryland Health Services Cost Review Commission 

(HSCRC) outpatient records, which spans the period from Q4 of 2012 to Q1 of 2021. Maryland HSCRC tracks 

complete patient-level claims data, for all hospital outpatient clinic visits across the state of Maryland, with 

details of clinical and demographic information.5 The data contains patient visit-level records across all 58 

non-Federal hospitals in Maryland. Each patient is provided a unique patient identifier that follows patients 

over time and across all hospitals/clinics in the region and study their entire visit and diagnosis history.  

On a typical telehealth visit, patients connect with providers through a secure videoconferencing 

telehealth platform. This provision of care, based on two-way, interactive videoconferencing from a provider 

site to the patient location, is defined as a telehealth visit or encounter (Nelson and Patton 2016). To identify 

telehealth visits, we followed the guidelines provided by CMS and HSCRC Data Analytics Center and used 

the CMS Current Procedural Terminology (CPT) modifiers GT and 95.6 We identified 26,948 patients with at 

least one telehealth visit. As described in the next section, we matched these patients to patients who did not 

undergo any telehealth visit using propensity score matching (PSM). Our PSM approach resulted in 80,842 

patients with no telehealth visits, for an overall total of 2,874,463 visits between 2012 and 2021.7  

Table 1 reports the descriptive statistics of our model variables. The two dependent variables represent 

the number of outpatient visits and total outpatient costs, within 30 days after a telehealth visit. We used a 30-

day time window to capture the effect of telehealth use on patients’ short-term healthcare utilization, after a 

telehealth visit.8 We created two dependent variables - Visit30D and Cost30D – which measure the number of 

outpatient visits and total costs incurred by outpatients, respectively, within 30 days after a telehealth visit.9 In 

 
5 Maryland state law requires all hospitals to submit their claim records to the HSCRC for cost review purposes. Hence, 

we followed HSCRC directions to identify telehealth visits. https://hscrc.maryland.gov/Pages/default.aspx, last accessed 

02/04/2023. 
6 For telehealth procedure identification, we followed the coding approach suggested by HSCRC as it takes into 

consideration the approach adopted by Medicare, Maryland Medicaid, and private payers in Maryland. 
7 To isolate the possible effect of the COVID-19 pandemic that started in 2020, we also performed a robustness test by 

focusing only on the time period before 2020 and observed consistent results.   
8 We also extended our analysis to a 90-day window in our robustness checks and observed consistent results.  
9 We used the hospital cost-to-charge ratio to calculate the actual costs incurred. 
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calculating future utilization, we followed the medical literature and only considered future visits with the 

same principal diagnoses as the index visit (Bonafede et al. 2018, Stahl et al. 2015).10 Accordingly, our dataset 

reveals an average of 1.1 visits (Visit30D) and outpatient costs of $888.40 (Cost30D) within 30 days. We 

observed an average incidence of 3.4% telehealth visits among all visits. 

Table 1. Descriptive Statistics  

Variable Variable Definition Dimension Mean Std. Dev 

Visit30D Number of visits within 30 days (of focal visit) Continuous 1.10 3.25 

Cost30D Dollar value of total cost within 30 days (of focal visit) Continuous 888.94 3624.79 

Telehealth Binary (1 = if visit involves at least one telehealth proc) 0 or 1 0.03 0.18 

ChronicVisit Binary (1 = if Principal Diagnoses is chronic) 0 or 1 0.67 0.47 

Num_Comorbidities Total number of patient comorbidities  Continuous 0.39 0.66 

PastVisit365D Number of past visits within 365 days (of focal visit) Continuous 7.91 20.27 

%PastPCPVisit365D Past PCP visits as a percent of number of past visits within 365 days Continuous 19.9% 40.3% 

%PastEDVisit365D Past ED visits as a percent of number of past visits within 365 days Continuous 2.4% 15.9% 

RVU Relative value unit Continuous 1.63 2.27 

PtAge Patient Age Continuous 41.43 21.41 

PtSingle Binary (1 = if Patient Marital Status: Single) 0 or 1 0.61 0.49 

PtMarried Binary (1 = if Patient Marital Status: Married) 0 or 1 0.26 0.44 

PtMariStatOther Binary (1 = if Patient Marital Status: Other) 0 or 1 0.13 0.33 

PtFemale Binary (1 = if Patient Gender: Female) 0 or 1 0.62 0.49 

PtBlack Binary (1 = if Patient Race: Black) 0 or 1 0.49 0.50 

PtWhite Binary (1 = if Patient Race: White) 0 or 1 0.43 0.49 

PtRaceOther Binary (1 = if Patient Race: Other) 0 or 1 0.08 0.27 

InsSelfPay Binary (1 = if PayerDesc: Self Pay) 0 or 1 0.01 0.12 

InsMedicare Binary (1 = if PayerDesc: Medicare) 0 or 1 0.26 0.44 

InsMedicaid Binary (1 = if PayerDesc: Medicaid) 0 or 1 0.39 0.49 

InsPrivate Binary (1 = if PayerDesc: Private) 0 or 1 0.31 0.46 

InsOther Binary (1 = if PayerDesc: Other) 0 or 1 0.03 0.16 

 

We account for the effect of several control variables involving time-variant patient and visit 

characteristics. First, we control for payer (insurance) types that may influence patients’ healthcare utilization 

as insurance status has been observed to be one of the determinants of healthcare service utilization (Blackwell 

et al. 2009). For each patient visit, payer type is categorized into one of five insurance classes: Self-pay (1%), 

Medicare (26%), Medicaid (39%), Private (31%) and Other (3%). Second, chronic disease patients may exhibit 

higher levels of healthcare resource consumption as their perceived healthcare service needs may be elevated 

(Blackwell et al. 2009). Following ICD-9-CM and ICD-10-CM coding schemes developed by the Healthcare 

 
10 Healthcare utilization is defined as (i) the number of billable encounters in a year where a billable encounter is defined 

as a face-to-face contact between a patient and health professional whose services are covered by an insurance provider 

(Stahl et al. 2015), and (ii) direct costs incurred during a 12-month period which include gross covered payments for all 

healthcare services (Bonafede et al. 2018). 
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Cost and Utilization Project, we create a chronic disease indicator, ChronicVisit, and deploy it as a control 

variable in our analysis. We observe that 67% of visits are related to chronic disease care.  

Next, we control for the number of comorbidities present at the time of a patient visit as a proxy for 

patient severity, following the Charlson Comorbidity Index calculation developed by Quan et al. (2005). To 

isolate a patient’s health-seeking behavior, we control for the number of past visits within the last one year of a 

focal visit, PastVisit365D (Clewley et al. 2018). We also include the percentage of past primary care provider 

(PCP) visits, %PastPCPVisit365D, and emergency department (ED) visits within the last year of the focal 

visit, %PastEDVisit365D, to further account for factors that may impact patients’ telehealth decisions and their 

future healthcare utilization (Clewley et al. 2018). On average, we observe 7.9 outpatient visits within the last 

year of a focal visit, of which 19.9% are PCP and 2.4% are ED visits. To control for challenges associated with 

financial compensation of telehealth services, we include the work relative value unit (RVU) metric of each 

visit (Weigel et al. 2020). RVUs are used by Medicare to determine payments to providers and serve as a 

proxy for physician compensation and productivity (BDO 2020). We also control for predisposing 

characteristics that may determine utilization of healthcare resources (Blackwell et al. 2009), including patient 

age (PtAge) and marital status (PtSingle, PtMarried, or PtOther).  

5 METHODOLOGY 

Our econometric estimation examines the impact of telehealth use on the utilization of healthcare 

resources, using panel data analysis. In doing so, we include several controls and fixed effects to account for 

time-variant and time-invariant effects in our model. We specify a generalized version of the multivariate 

model with patient and time fixed effects, as shown in equation (1). 

𝑈𝑡𝑖𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛𝑖ℎ𝑡+1 = 𝛽1𝑇𝑒𝑙𝑒ℎ𝑒𝑎𝑙𝑡ℎ𝑖ℎ𝑡 + 𝜷 ∙ 𝐶𝑜𝑛𝑡𝑟𝑜𝑙𝑠𝑖ℎ𝑡 + 𝜃𝑖 + 𝜑ℎ + 𝜆𝑡 + 𝜖𝑖ℎ𝑡 (1) 

where i indicates the patient, h indexes an outpatient clinic (hospital), and t refers to the time of visit. We 

control for patient fixed effects with 𝜃𝑖, outpatient clinic fixed effects with 𝜑ℎ and time (quarter) fixed effects 

with 𝜆𝑡. We estimate equation (1) for Visit30D and Cost30D as the Utilization variable. In the controls vector, 

we include a chronic visit identifier and patients’ time varying covariates - age, marital status, insurance type, 
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number of comorbidities, and RVU of the visit. We also control for the number of past patient visits that 

occurred in the year prior to the current visit at time t, percent of past visits that are PCP visits, and percent of 

visits that are ED visits. Doing so accounts for time-variant, systematic differences among patients who use 

healthcare resources at varying levels in the future. We also include the number of comorbidities to account for 

time-variant differences in a patient’s health status that may change during our observation period. The 

coefficient 𝛽1 is of primary interest since it measures future changes in utilization for telehealth visits 

compared to in-person visits.  

Although the controls in the fixed-effects model address concerns related to unobserved patient and 

visit-level (time-invariant) heterogeneity that may influence patients’ decisions to use telehealth and utilize 

healthcare resources, identification of the impact of telehealth may still suffer from bias due to patient-specific, 

uncontrolled (time-variant) confounding factors exhibited by pretreatment control variables. Specifically, 

patients who do not use telehealth may differ systematically from those who use telehealth in terms of the 

distribution of the observed covariates, and hence, may not serve as representative counterfactuals (Rubin 

2001). To tackle this problem, we followed a two-step identification strategy that (a) first matches patients 

using propensity score matching (PSM), and (b) then uses an instrumental variable (IV) approach to account 

for time-varying, visit-level, unobserved factors related to telehealth visits.  

In the first stage, we classified patients into two groups - telehealth and non-telehealth - and assigned a 

patient to the telehealth group if she had a telehealth visit. To identity the non-telehealth group, we identified 

patients who did not receive any telehealth service but had similar characteristics to those patients who 

received telehealth. We used a one-to-many, greedy nearest-neighbor matching algorithm to locate and match 

three control patients for every treated patient (Rosenbaum 1989), because the number of patients with at least 

one telehealth visit was considerably lower than those without a telehealth visit. To implement the matching 

algorithm, we included several patient- and visit-level controls, including chronic disease condition, age, race, 

marital status, gender, and number of past visits within a year as matching covariates. This strategy resulted in 

a final dataset of 107,790 patients, comprising a total of 2,874,463 visits.  
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Figure 1. PSM Variable Statistics Before and After Matching 

 

Our treatment group consists of 26,948 patients who underwent at least one telehealth visit, while the 

matched set of 80,842 patients without telehealth comprises the control group. On average, telehealth use was 

3.4% across all the visits. Figure 1 shows the standardized mean covariate differences between treatment 

(patients with telehealth) and control (patients without telehealth) groups, before and after PSM. We observe 

that the logit propensity score between treatment and control groups reduced from 0.201 to -0.0001, and the 

absolute standardized mean differences for all matching variables are less than the recommended upper limit of 

0.25 (Rubin 2001).  

5.1 Instrumental Variable Approach  

Although we account for confounding time-invariant effects and pre-treatment, patient-level confounding 

factors through matching, telehealth use may still suffer from endogeneity due to uncontrolled visit-level 

confounding factors that may be time variant. For instance, patients who live in rural areas may be more 

inclined to use telehealth compared to patients in urban areas, due to disparities in access to healthcare 

resources. To address such endogeneity concerns, we applied an IV estimation approach.  
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Any potential IV candidates should explain the variations in our endogenous variable, Telehealth, while 

not being systematically co-determined with the dependent variables of interest—Visit30D and Cost30D. One 

such possible IV is a patient’s physical distance to the focal hospital/clinic that served as the originating site 

for the telehealth visit relative to the distance from the nearest hospital (to the patient’s residence) where the 

patient could have received treatment from. Hence, we measure DiffDistance as the difference between (a) the 

distance from a patient’s home zip code to the focal hospital, and (b) distance from the patient’s home zip code 

to the closest hospital, measured in miles. First, the physical distance between a patient’s home location and 

the hospital can be considered as a proxy for socio-economic conditions in areas with little or no access to 

healthcare (Bavafa et al. 2018). Such patients need to travel farther to access healthcare services and are more 

likely to utilize telehealth (Rajan et al. 2019). In contrast, the raw distance to the hospital may impact future 

utilization, which does not fulfill the exogeneity condition of an IV (Nemet and Bailey 2000).  

To eliminate this plausibility, we introduce a relative distance metric where we address the possibility of 

having nearby options. Our relative distance metric, DiffDistance, is the difference between the distance to the 

focal hospital (where treatment is received either in-person or virtually) and distance to the nearest hospital 

from a patient’s residence (see Figure 2). Higher values of DiffDistance indicate that the patient is likely to 

travel farther from the nearest hospital to receive care and, are therefore, more likely to use telehealth. 

Similarly, patients who do not avail services at the nearest hospital may indicate a lack of appropriate 

resources or access. Furthermore, higher values of DiffDistance do not necessarily mean that the patient’s 

future healthcare utilization will be low, since non-negative values of this metric implies that there are 

alternative hospitals where the patient can choose to be treated. On the other hand, it is reasonable to assume 

that the distance from a patient’s residence to the focal hospital (relative to the nearest hospital) is exogenous 

to the healthcare outcomes of interest, since their choice of residence is likely to be guided by other exogenous 

factors (e.g., school district, family income) but unlikely to be determined by future health outcomes.11 

 
11 We also checked a version where we divided DiffDistance by the distance to the nearest hospital to address scaling 

issues. Scaling the distance metric yielded similar results.  
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Figure 2. Visualization of the DiffDistance Instrument Construction    

We conducted several tests to ensure the quality of our IV selection. First, the Hausman test, which 

compares OLS with 2SLS estimates, rejects the absence of endogeneity in the telehealth variable with a p-

value of 0.006. Second, we checked whether the IV, DiffDistance, satisfies the relevance property of IV in 

2SLS. We employed a weak identification test of the IVs, using a Kleibergen-Paap Wald rank weak 

instruments test, where the null hypothesis suggests that the model is underidentified or the instruments are 

weak. The Kleibergen-Paap rank Wald F statistic is 74.109, which is above the 10% maximal Stock-Yogo 

critical value, suggesting that the maximum bias in our IV approach can be at most 10% of the bias in an OLS 

approach. Hence, we conclude that our IVs are not weak and meet the necessary criteria for selection. We also 

perform falsification tests to assess the exogeneity of our IV in Section 6.4.6. 

When the endogenous variable is binary, a standard 2SLS approach may yield inconsistent estimates 

(referred to as forbidden regression), since the fitted values of a binary variable from the first stage estimation 

will not be binary, nor will they be probabilistic in the second stage (Wooldridge 2010). Therefore, as 

suggested, we adopt a three-step approach where we first estimated a Probit model and regressed Telehealth on 

our instrumental variable and other controls, including patient, hospital, and time fixed effects (Angrist and 

Pischke 2008). In the second step, we calculate the predicted values of Telehealth from the first stage, which 

we denote as Telehealth_hat. In the third step, we follow a regular 2SLS estimation approach with 
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Telehealth_hat being the only IV for the endogenous Telehealth variable. This estimation produces consistent 

and unbiased estimates (Angrist and Pischke 2008). We provide the first stage results in Appendix Table A2. 

To further alleviate concerns related to instrument selection, we explored two alternate potential 

instruments. First, the extent of broadband Internet penetration in the market area of a hospital may serve as 

an alternative instrument.12 Having broadband access is a prerequisite for telehealth, since it is difficult to 

conduct telehealth visits without broadband Internet service. However, availability of broadband in a hospital’s 

service region is unlikely to be directly correlated with the number of patient visits or visit costs, since these 

measures are driven by patients’ underlying health conditions. We define the market area of a hospital as its 

Hospital Service Area (HSA) based on the Dartmouth Atlas of Health Care.13 We calculated the HSA level 

broadband Internet penetration and included it as an instrument in our 3-step IV approach. We report our 

results and IV statistics in Appendix Table A3 (column 1) and observe qualitatively consistent results.  

Another alternative IV is the level of telehealth use by patients in their neighboring zip codes (Angst et 

al. 2010, Ganju et al. 2022). This is because the focal patient’s telehealth decision may be correlated with other 

patients’ telehealth use in neighboring zip codes due to similarities in service availability and access to care, 

but the telehealth use of other patients should not directly affect the focal patient’s future healthcare utilization. 

Accordingly, we calculate the telehealth use in a patient’s neighboring zip codes in the same year-quarter and 

used it as an alternative instrument in our estimations. The estimated coefficients of telehealth use for future 

visits and costs following a 3-step IV approach are reported in Appendix Table A3 (column 2). Overall, we 

observe that the sign and significance of our results are similar for both alternate instrumental variables.   

 
12 We obtained high speed Internet connection data from Form 477 Census Tract Data on Internet Access Services 

provided by Federal Communications Commision. We considered the highest speed connection available in both 

directions (download and upload) during our study period. https://www.fcc.gov/form-477-census-tract-data-internet-

access-services, last accessed 02/04/2023 
13 https://data.dartmouthatlas.org/supplemental/#boundaries, last accessed 02/04/2023. 
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6 RESULTS 

6.1 Effect of Telehealth on Healthcare Utilization 

Our IV estimation results are reported in Table 2. Accordingly, if a patient has a telehealth visit, the total 

number of future outpatient visits decreased by 13.6% (β1 = -0.147; p < 0.01) or 0.15 visit (=1.1*0.136) within 

the next 30 days, while total outpatient costs decrease by 26.9% (β1 = -0.313; p < 0.01) or $239 

(=888.9*0.269).14 Our results support H1 and represent a significant finding with respect to the impact of 

telehealth on future utilization.   

Table 2. Baseline Estimation Results for Healthcare Utilization 

DV Ln(Visit30D) Ln(Cost30D) 

Telehealth -0.147*** (0.004) -0.313*** (0.022) 

Ln(PtAge) 0.021*** (0.001) 0.081*** (0.020) 

Ln(PtAge)2 -0.010*** (0.001) -0.028*** (0.006) 

PtMarried -0.008*** (0.002) -0.011 (0.009) 

PtOther 0.007*** (0.002) -0.004 (0.009) 

InsMedicare -0.107*** (0.003) 0.060*** (0.013) 

InsMedicaid 0.047*** (0.002) 0.237*** (0.011) 

InsPrivate -0.016*** (0.002) 0.235*** (0.015) 

InsOther 0.104*** (0.003) 0.412*** (0.018) 

Chronic 0.081*** (0.001) 0.776*** (0.003) 

Num_Comorbidities -0.015*** (0.000) -0.106*** (0.003) 

Ln(PastVisit365D) 0.167*** (0.000) 0.932*** (0.002) 

%PastPCPVisit365D -0.143*** (0.001) -0.424*** (0.005) 

%PastEDVisit365D -0.089*** (0.001) -0.257*** (0.011) 

Ln(RVU) -0.023*** (0.001) 0.009*** (0.003) 

Patient Fixed Effect Included Included 

Hospital Fixed Effect Included Included 

Quarter Fixed Effect Included Included 

Observations 2,869,541 2,869,541 

R2 0.158 0.149 
Bootstrap (n=50) standard errors in parentheses. * p < 0.10, ** p < 0.05, *** p < 0.01. 

Regression results are based on 3-step IV estimation.   

6.2 Disease Types and Care Virtualizability   

We conducted an extensive literature review to study the degree of virtualizability of common diseases 

and summarize our findings in Appendix Table A4. Drawing on prior empirical evidence, we identified 16 

disease groups based on their level of virtualizability on a scale of low, medium, and high. To further 

 
14 As our dependent variable is log transformed in the model, we calculate the effect size (in percentages) with the 

formula (exp(β)-1)*100 for one unit increase in the independent variable. 
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understand and confirm the types of diseases that are more amenable to virtualization using telehealth, we 

consulted 16 medical practitioners with experience in using telehealth, of whom 12 were affiliated with a 

leading academic medical center in the U.S. Using a survey questionnaire, we asked practitioners whether 

telehealth can virtualize care for each of the 16 disease groups based on HCUP’s clinical classification 

software (CCS) guidelines (HCUP 2016). Practitioners were asked to score the disease categories based on 

three types of telehealth capabilities (i.e., reach, representation, and monitoring) to virtualize patient diagnosis 

and care (using a scoring scheme of 3 for likely, 2 for neither, and 1 for unlikely). We averaged the response 

scores for each combination of disease category and telehealth capability. We then classified their responses as 

high when the average score was more than the sample’s average score plus 0.5 standard deviation. After 

obtaining a high versus low classification for each combination of disease and telehealth capability, we 

identified diseases in high virtualizability category if at least two of three dimensions were rated as high. We 

report the final classification of diseases based on their virtualizability in Table A5 of the Appendix.  

We classified four disease categories in the high virtualizability category: (1) endocrine, nutritional, and 

metabolic diseases, (2) mental illnesses, (3) diseases of the skin and subcutaneous tissue, and (4) diseases of 

the musculoskeletal system. This classification is consistent with our theoretical arguments and prior evidence 

based on an extensive review of the telehealth literature, as shown in Table A4 of the Appendix. The 

remaining disease categories were classified as having low virtualization potential. Overall, the survey data 

collected from practitioners helped us identify the disease categories that are more amenable to virtualization, 

and thereby, distinguish high versus low virtualizability diseases. Next, our aim is to assess whether telehealth 

is more effective in reducing healthcare utilization among high virtualizability diseases, compared to low 

virtualizability diseases.  

Table 3 reports the results of split-sample analyses based on the level of disease virtualizability. We 

observe that diseases with high virtualization potential exhibit significant reduction in future outpatient visits 

(Visit30D) and costs (Cost30D) after telehealth encounters. Specifically, when a visit is associated with a 

highly virtualizable disease, the total number of future visits decreases by 12.2% (β1 = -0.103; p-value < 0.01) 
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or equivalently 0.21 visits (=1.71*0.122), with a total outpatient cost reduction of 26.4% (β1 = -0.307; p-value 

< 0.01) or equivalently $179.5 (=680*0.264), within 30 days after a telehealth visit. For low virtualizability 

diseases, however, we do not observe a significant impact of telehealth on future visits (β = 0.002; p-value > 

0.10), but there is a marginally negative effect on total outpatient costs (β = -0.170; p-value < 0.10). 

Table 3. Healthcare Utilization for Disease Categories with Low and High Virtualization Potential 

DV Ln(Visit30D) Ln(Cost30D) 

 Low Virtualization High Virtualization Low Virtualization High Virtualization 

Telehealth 0.002 (0.013) -0.103*** (0.005) -0.170* (0.093) -0.307*** (0.027) 

Ln(PtAge) -0.037*** (0.004) -0.107*** (0.011) -0.217*** (0.029) -0.331*** (0.062) 

Ln(PtAge)2 0.009*** (0.001) -0.002 (0.003) 0.058*** (0.010) -0.007 (0.014) 

PtMarried -0.004* (0.002) -0.025*** (0.003) 0.014 (0.017) -0.064*** (0.019) 

PtOther 0.002 (0.002) 0.022*** (0.003) 0.005 (0.016) 0.036** (0.016) 

InsMedicare -0.023*** (0.004) -0.172*** (0.005) 0.063** (0.025) -0.023 (0.022) 

InsMedicaid 0.021*** (0.003) 0.058*** (0.005) 0.237*** (0.020) 0.178*** (0.020) 

InsPrivate -0.007** (0.003) -0.022*** (0.005) 0.203*** (0.022) 0.180*** (0.021) 

InsOther 0.222*** (0.006) 0.044*** (0.006) 0.590*** (0.031) 0.236*** (0.026) 

Chronic 0.054*** (0.001) 0.084*** (0.001) 0.547*** (0.006) 0.734*** (0.008) 

Num_Comorbidities 0.000 (0.001) -0.029*** (0.001) 0.004 (0.005) -0.268*** (0.006) 

Ln(PastVisit365D) 0.114*** (0.001) 0.122*** (0.001) 0.853*** (0.005) 0.600*** (0.003) 

%PastPCPVisit365D -0.070*** (0.001) -0.121*** (0.001) -0.251*** (0.008) -0.388*** (0.007) 

%PastEDVisit365D -0.052*** (0.002) -0.053*** (0.003) -0.249*** (0.014) -0.099*** (0.022) 

Ln(RVU) -0.002*** (0.001) -0.074*** (0.001) -0.008 (0.005) -0.058*** (0.006) 

Patient Fixed Effect Included Included Included Included 

Hospital Fixed Effect Included Included Included Included 

Quarter Fixed Effect Included Included Included Included 

Observations 1,191,347 1,236,438 1,191,347 1,236,438 

R2 0.108 0.107 0.087 0.084 
Robust standard errors in parentheses. * p < 0.10, ** p < 0.05, *** p < 0.01. Regression results are based on 3-step IV estimation.   

Low virtualization disease categories include (1) Infectious and parasitic diseases, (2) Neoplasms, (3) Diseases of the blood and blood-forming organs, 

(4) Diseases of the nervous system and sense organs, (5) Diseases of the circulatory system, (6) Diseases of the respiratory system, (7) Diseases of the 

digestive system, (8) Diseases of the genitourinary system, (9) Complications of pregnancy, childbirth, (10) Congenital anomalies, (11) Certain 

conditions originating in the perinatal. 

High virtualization disease categories include (1) Endocrine, nutritional, and metabolic diseases, (2) Mental illness, (3) Diseases of the skin and 

subcutaneous tissue, (4) Diseases of the musculoskeletal system. 

Taken together, our results support H2 and underscore the differential impact of disease types on the 

relationship between telehealth use and healthcare utilization.15 This finding lends support to our argument that 

certain disease types may benefit more from process virtualization, leading to a substitution of future in-person 

visits and utilization among high virtualizability diseases. In contrast, low virtualizability visits do not exhibit a 

 
15 Comparison of coefficients between high virtualization and low virtualization models show a significant Chow test with 

Chi-square (df=1) = 127.71 and p-value = 0.000. 
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substantial change in healthcare utilization. A possible reason is that low virtualizability diseases require 

immediate treatment or follow-up (such as cancer, heart failure, or pneumonia), and therefore, telehealth may 

serve as a gateway to future in-person visits or as a referral channel to specialist services.  

6.3 Role of Telehealth Capabilities 

To test H3, we conducted several analyses to examine the impact of telehealth’s individual capabilities 

(representation, reach, and monitoring) on future resource utilization, based on four metrics - ED visits, PCP 

visits, non-PCP visits, and costs. With respect to its representation ability, we considered disease categories 

that were rated high on the representation dimension in Table A5 (i.e., HighRepresent = 1). Next, we selected 

diseases that were rated low across all three dimensions of telehealth’s capabilities and classified them in the 

low representation category (i.e., HighRepresent = 0), since the excluded diseases may have high ratings for 

reach and monitoring that could confound the counterfactual.16 After constructing the indicator variable, 

HighRepresent, we interact it with Telehealth, and perform our 3-step IV estimation. We report these 

interaction estimation results in Table 4. 

Table 4. Impact of Telehealth and Representation on Resource Utilization   

 Dependent Variable 

Variable: Ln(EDVisit30D) Ln(PCPVisit30D) Ln(NonPCPVisit30D) Ln(Cost30D) 

Telehealth -0.005 (0.003) -0.112*** (0.009) 0.003 (0.014) -0.663*** (0.108) 

HighRepresent -0.002*** (0.000) -0.004*** (0.000) 0.043*** (0.001) 0.303*** (0.005) 

Telehealth*HighRepresent 0.002 (0.003) 0.043*** (0.009) -0.102*** (0.014) 0.231** (0.103) 

Controls Included Included Included Included 

Patient, Hospital, and Quarter 

Fixed Effects 
Included Included Included Included 

Observations 1,952,761 1,952,761 1,952,761 1,952,761 

R2 0.029 0.020 0.082 0.101 
* p < 0.10, ** p < 0.05, *** p < 0.01. Robust standard errors in parentheses. 

Each cell refers to the coefficient estimate of the respective variable in a specific regression. 

Regression results are based on 3-step IV estimation. Full results are available upon request 

When representation capability is high, the coefficient of Telehealth x HighRepresent indicates that 

patients who undergo telehealth are likely to experience more PCP visits in the future (coeff. = 0.043, p-val < 

0.01), but fewer non-PCP (i.e., specialist) visits (coeff. = -0.102, p-val < 0.01). We also observe a slight 

 
16 We also performed a robustness check for the low representation group (i.e., HighRepresent = 0) and included the four 

lowest-rated disease categories to sharpen the distinction between high and low representation groups. We observed 

qualitatively consistent results. 
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increase in future costs for telehealth visits that exhibit high representation. To better understand the impact on 

costs, we visualize the cost trends of high versus low representation diseases with respect to telehealth versus 

non-telehealth visits, as shown in Figure B1 of the Appendix. We observe that when telehealth is used to treat 

patients with high representation diseases, the cost gap between telehealth and in-person visits narrows over 

time, while the gap remains relatively stable for low representation diseases. Our results reveal an intriguing 

aspect of telehealth. While telehealth use does not impact future ED visits, it can improve follow-up care 

through more frequent PCP visits and reduce the need to seek non-PCP (or specialist) services. 

Next, we study the impact of telehealth’s monitoring ability on the incidence of future ED, PCP, non-

PCP visits, and treatment costs. To proxy monitoring ability, we specifically examine chronic diseases because 

they often require constant monitoring and management of disease progression (Bestsennyy et al. 2021). 

Telehealth can preempt deterioration of chronic conditions which, if not treated in a timely manner, may result 

in adverse ED visits (Gellis et al. 2014). Since the clinical protocols for managing chronic diseases are well 

established based on evidence-based care pathways, we expect that patients with chronic diseases, if managed 

virtually through telehealth, will exhibit fewer visits and lower costs in the future. We performed a split sample 

analysis based on high versus low virtualization diseases following our earlier classification. We then estimate 

the interaction effect of telehealth and chronic visits on future healthcare utilization, as reported in Table 5. 

The coefficients of the interaction term, Telehealth x Chronic, suggest that when telehealth is used to manage 

chronic diseases with high virtualizability, patients will experience fewer PCP (coeff. = -0.087), non-PCP 

visits (coeff. = -0.261), and lower costs (coeff. = -1.45). While low virtualization cases also show a reduction 

in PCP visits and costs, we do not observe a significant effect on non-PCP visits.  

Third, we examined the impact of telehealth’s reach ability on future healthcare utilization. We used 

patients’ geographic location (i.e., rural versus urban) to indicate whether the reach capability of telehealth is 

leveraged when medical processes are virtualized for patients in rural areas who may lack equitable access to 

in-person healthcare. The telehealth literature has also used rural settings to identify a lack of access to 

healthcare resources and observed that telehealth enables synchronous execution of medical counseling, 
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suggesting facilitation of virtualization via its greater reach (Chao et al. 2021, Yeow and Goh 2015). We 

followed the rural area definition of the Office of Management and Budget and categorized patients into rural 

or urban locations based on their residential zip codes.17 We performed a similar split sample analysis where 

we estimated the interaction effect of telehealth and rural (patient) location on future utilization for high and 

low virtualization visits. Our results are shown in Table 6.  

Table 5. Impact of Telehealth and Monitoring on Resource Utilization 

 Dependent Variable: 

 Ln(EDVisit30D) Ln(PCPVisit30D) Ln(NonPCPVisit30D) Ln(Cost30D) 

Panel A – High Virtualization 

Telehealth 0.008 (0.005) 0.014 (0.016) 0.198*** (0.032) 1.091*** (0.232) 

Chronic -0.000 (0.000) 0.034*** (0.001) 0.035*** (0.001) 0.750*** (0.009) 

Telehealth*Chronic -0.007 (0.005) -0.087*** (0.016) -0.261*** (0.032) -1.450*** (0.230) 

Controls Included Included Included Included 

Patient, Hospital, and Quarter 

Fixed Effects 
Included Included Included Included 

Observations 1,236,438 1,236,438 1,236,438 1,236,438 

R2 0.020 0.012 0.061 0.064 

Panel B – Low Virtualization 

Telehealth -0.005 (0.004) 0.132*** (0.011) -0.016 (0.015) 1.399*** (0.156) 

Chronic 0.001** (0.000) 0.026*** (0.001) 0.018*** (0.001) 0.563*** (0.006) 

Telehealth*Chronic -0.005 (0.004) -0.203*** (0.015) 0.029 (0.020) -2.233*** (0.176) 

Controls Included Included Included Included 

Patient, Hospital, and Quarter 

Fixed Effects 
Included Included Included Included 

Observations 1,191,347 1,191,347 1,191,347 1,191,347 

R2 0.019 0.027 0.027 0.065 
* p < 0.10, ** p < 0.05, *** p < 0.01. Robust standard errors in parentheses. 

Each cell refers to the coefficient estimate of the respective variable in a specific regression. 

Regression results are based on 3-step IV estimation. Full results are available upon request 

We observe that rural patients undergoing telehealth for high virtualizability diseases exhibit a higher 

incidence of PCP and non-PCP visits but incur lower costs, within 30 days after a telehealth visit. This 

suggests that rural patients with diseases that are amenable to virtualization may use telehealth as a triage (or 

gateway), and thus, may experience more PCP and non-PCP visits after telehealth consultations. Our results 

corroborate earlier findings which report that distance still matters for telehealth use, exacerbating the digital 

divide and geographic healthcare disparities (Goh et al. 2016, Hwang et al. 2022). While we observe a 

 
17 https://www.hrsa.gov/rural-health/about-us/what-is-rural, last accessed on 02/04/2023. 
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marginal reduction in cost after telehealth, we do not find evidence that telehealth’s reach ability reduces 

healthcare utilization among rural patients. Hence, we report partial support for H3. 

Table 6. Impact of Telehealth and Reach on Resource Utilization 

 Dependent Variable: 

 Ln(EDVisit30D) Ln(PCPVisit30D) Ln(NonPCPVisit30D) Ln(Cost30D) 

Panel A – High Virtualization 

Telehealth 0.001 (0.001) -0.068*** (0.002) -0.049*** (0.004) -0.307*** (0.027) 

Rural 0.007** (0.003) 0.003 (0.004) -0.045*** (0.007) -0.011 (0.055) 

Telehealth*Rural -0.000 (0.004) 0.028* (0.015) 0.138*** (0.022) -0.317* (0.178) 

Controls Included Included Included Included 

Patient, Hospital, and Quarter 

Fixed Effects 
Included Included Included Included 

Observations 1,236,438 1,236,438 1,236,438 1,236,438 

R2 0.021 0.013 0.061 0.064 

Panel B – Low Virtualization 

Telehealth -0.008*** (0.002) -0.010 (0.008) 0.009 (0.011) -0.123 (0.094) 

Rural 0.002 (0.002) -0.009** (0.005) 0.006 (0.006) -0.101** (0.045) 

Telehealth*Rural -0.008 (0.013) -0.027 (0.035) -0.114** (0.054) -1.661*** (0.488) 

Controls Included Included Included Included 

Patient, Hospital, and Quarter 

Fixed Effects 
Included Included Included Included 

Observations 1,191,347 1,191,347 1,191,347 1,191,347 

R2 0.019 0.028 0.027 0.065 
* p < 0.10, ** p < 0.05, *** p < 0.01. Robust standard errors in parentheses. 

Each cell refers to the coefficient estimate of the respective variable in a specific regression. 

Regression results are based on 3-step IV estimation. Full results are available upon request 

Our empirical analysis delineates the sources of overall reduction in healthcare utilization, which can be 

attributed to the representation and monitoring abilities of telehealth. Specifically, telehealth’s ability to 

provide virtual representation through integration of sensory and relationship features for specific diseases can 

reduce future healthcare utilization. For instance, we observe that using telehealth to communicate patient 

symptoms and medical conditions for mental health, skin disorders, metabolic, and musculoskeletal diseases, 

is an effective approach to substitute in-person visits. Furthermore, the monitoring capability of telehealth 

leads to a displacement in healthcare utilization among chronic disease patients (Thompson et al. 2020). 

Hence, chronic patients are less likely to incur costly specialist and PCP visits in the future. Our findings 

reveal important trade-offs in provisioning telehealth across distinct disease types with respect to their 

virtualization potential. 
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6.4 Robustness Analyses 

We performed several robustness checks to strengthen model identification and the robustness of our 

findings. First, we deployed coarsened exact matching (CEM) at the visit-level. Second, we performed non-

parametric matching using a causal forest approach to demonstrate the consistency of our earlier results. Third, 

we used a Heckman approach to re-estimate the impact of telehealth use and address identification concerns. 

Fourth, we tested our main results using a time window of 90 days to study whether the impact of telehealth on 

healthcare utilization manifests over a longer time horizon. As a consistency check, we focused on the period 

before 2020 to rule out concerns related to telehealth use during the COVID-19 pandemic. Finally, we 

performed robustness and falsification checks to further validate the exogeneity of our IV and our results. 

6.4.1 Coarsened Exact Matching Approach 

Previously we deployed PSM at the patient-level. To enhance the matching robustness, we utilize CEM 

at the visit level by matching telehealth visits to non-telehealth visits. CEM is a non-parametric method based 

on stratification and requires no assumptions about the data generation process (Iacus et al. 2012). CEM can 

improve covariate imbalance across treatment and control groups and reduce model dependence and statistical 

bias compared to parametric matching techniques (Iacus et al. 2012).  

Drawing on the matched patient sample generated using PSM, we applied CEM at the visit-level to 

reduce the imbalance in our data across telehealth and non-telehealth visits. To perform CEM, we used patient 

time-varying covariates, age, insurance, and marital status, along with other visit-level characteristics such as 

a patient’s past visits to account for health seeking behavior. We also coarsened the numerical variables by 

binning them into categorical levels. We have summarized our CEM matching criteria in Table B1 of the 

Appendix. The CEM algorithm matched 96,291 telehealth visits to 1,107,939 non-telehealth visits. We also 

provide the variable imbalance statistics in Table B2 of the Appendix and observe substantial improvements in 

the mean differences of treatment and control groups before and after CEM. Since we performed one-to-many 

matching, the control observations need to be weighted to balance the sample. We used CEM weights 

calculated for each observation with respect to the size of their strata in our econometric estimations.    
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To evaluate the results of the CEM approach, we estimated the econometric model in equation (1), 

where we included the controls as well as patient, hospital, and time fixed effects. Our results are shown in 

Table B3 and indicate that telehealth use results in a drop in the total number of future outpatient visits by 

23.4% (β1 = -0.267; p < 0.01), while total outpatient costs decrease by 14.9% (β1 = -0.162; p < 0.01), within 

the next 30-day period. The CEM results are qualitatively and quantitatively similar to our main findings.   

6.4.2 Causal Forest Approach 

In addition to CEM, we implemented a causal forest (CF) non-parametric approach. CF is an extension 

of random forests and is a popular technique in the field of causal machine learning, which combines 

econometrics and machine learning approaches to estimate heterogeneous causal effects (Athey and Imbens 

2016). Unlike traditional machine learning, where the goal is to minimize prediction error, CF aims to split 

data into subgroups (or leaves) in which the average difference in outcomes between treatment and control 

observations differs the most. With this goal, CF estimates the heterogeneous treatment effect across the entire 

sample by building thousands of individual trees through bootstrapping (Athey et al. 2019). 

We applied this approach to examine the causal effect of telehealth use on future visits and outpatient 

costs. We include time effects (year-quarter identifiers) and hospital identifiers to account for time and hospital 

specific differences between telehealth and non-telehealth visits, as well as other patient controls. We used the 

grf package in R to estimate the causal forest. Using the entire sample, we generated 1,000 trees. To evaluate 

the CF results, we calculated the sample overlap-weighted average treatment effect (ATE) as the treatment 

propensities were very close to 0 or 1 (Li et al. 2018). The weighted ATE estimate for Visit30D is -0.077 (p-val 

< 0.01) indicating a reduction of 7.4% in the number of future visits for patients who underwent a telehealth 

visit, while the weighted ATE estimate for Cost30D is -0.080 (p-val < 0.01) indicating a reduction of 7.7% in 

future outpatient costs for patients with at least one telehealth visit. 

6.4.3 Heckman Selection 

Next, we address a potential selection issue in our telehealth use variable that may be attributed to unobserved 

latent selection of patients. We used a two-step Heckman selection procedure and estimated the inverse Mills 
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ratio (IMR) from the first-stage probit model (Heckman 1979). First, we regressed Telehealth on all exogenous 

variables in our main model. We also included DiffDistance in the first stage as an exclusion restriction 

criterion for the second-stage regression since IMR is prone to collinearity, leading to incorrect standard errors 

in the second stage (Leung and Yu 1996). We then calculated the generalized IMR in a full treatment model, 

where 𝐼𝑀𝑅 =  𝜙(𝑋2𝛽̂2)/Φ(𝑋2𝛽̂2) if 𝑇𝑒𝑙𝑒ℎ𝑒𝑎𝑙𝑡ℎ = 1 and 𝐼𝑀𝑅 =  −𝜙(𝑋2𝛽̂2)/(1 − Φ(𝑋2𝛽̂2)) if 

𝑇𝑒𝑙𝑒ℎ𝑒𝑎𝑙𝑡ℎ = 0. 18 Inclusion of the IMR in second stage panel estimation (with patient, hospital, and quarter 

fixed effects) as a control variable accounts for endogeneity concerns regarding patients’ self-selection into 

telehealth visits (Wooldridge 2010). We report the second stage results in Table B4 of Appendix B, which 

indicate that patients with telehealth encounters experienced a 11.4% drop in the number of outpatient visits or 

a decrease of 0.13 visits (p < 0.01) in the subsequent 30-day period. Further, patients lowered their outpatient 

costs by 20.5% or $182 after a telehealth visit. Both results are consistent with our main findings.  

6.4.4 Ninety-day Time Window 

In the event that the impact of telehealth use on utilization persists or dissipates over a longer period, our 

earlier findings based on a 30-day time window may provide a partial estimate of its impact. Therefore, we 

extended our analysis to a window of 90 days and reported these results in Table B5 of Appendix B. We 

observe a significant decrease in the total number of outpatient visits following a telehealth visit, specifically a 

decrease of 0.6 visits (20.7%) and $951.6 in total costs (46.4%), in the subsequent 90-day period.19   

6.4.5 Pre-Covid-19 Analysis 

Our analysis of the impact of telehealth may be confounded by the COVID-19 pandemic, when telehealth use 

skyrocketed due to the pandemic lockdown. To alleviate this concern, we performed a robustness analysis by 

focusing only on the period before 2020. Accordingly, we performed PSM on the subset of visits that occurred 

before 2020. Our PSM approach matched a subset of 633 telehealth patients to 1,899 non-telehealth patients 

with an overall sample of 98,139 visits. We report the results of our three-step IV estimation in Appendix 

 
18 (.)  and (.)  denote the probability density and cumulative distribution functions of a standard normal distribution, 

respectively. 𝑋2 is the vector of explanatory variables and 𝛽̂
2
 is the vector of estimated coefficients from the first stage.   

19 We also conducted an analysis by extending the time window of our DVs to a year and observed consistent results. 
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Table B6. Our results are qualitatively consistent as patients undergoing telehealth exhibit a reduction in their 

number of future visits (β1 =-0.606, p-val < 0.01) and reduction in future costs (β1 =-2.011, p-val < 0.01). 

Therefore, we conclude that telehealth use during COVID-19 does not change our main findings.   

6.4.6 Exogeneity of IV and Falsification Tests 

We performed several tests to ensure the exogeneity of our instruments. We first checked whether insurance 

status and the IV collectively impact our DVs for non-telehealth visits, i.e., if the impact of the IV varies by 

patient insurance status, then it may suggest confounding (Barron et al. 2021). We did not observe any 

correlations between these in our graphical plots and empirical estimations. Hence, health insurance status was 

not observed to change the perceptions of distance between the care location and patient zip code and its 

impact on telehealth use.  

Second, we performed several falsification tests to ascertain that our main independent variable, 

Telehealth, is not prone to randomization concerns and our instrument, DiffDistance, is exogenous. First, we 

checked whether our IV, DiffDistance, indirectly predicts future visits and costs for patients who never had a 

telehealth visit. For these patients, we assigned a Telehealth visit at random (i.e., 3% of the visits received 

Telehealth = 1 at random). We report our results in Column 1 of Table B7 in the Appendix, and do not observe 

any significant results, confirming the validity of our IV.  

Third, we implemented three falsification tests to check whether patients' level of health cautious 

behavior confounds our results and endogenizes our IV, DiffDistance (Barron et al. 2021). For this, we 

implemented a randomization inference test and check whether our IV is correlated with spurious unobserved 

factors, such as patient’s health cautious decisions being driven by access and socio-economic status. We 

randomly swapped the Telehealth variable by (a) patient, (b) zip code, and (c) zip code and insurance status. 

We provide our results in Table B7, columns 2 through 4. We observe consistently insignificant results after 

randomization, indicating our IV is not prone to confounding based on patients’ health cautious decisions. 

Finally, to check whether our telehealth visit variable suffers from uncontrolled confounding issues, we 

implemented a doubly robust (DR) estimation technique. DR estimation alleviates model misspecification 
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issues not only in the outcome model but also in the treatment assignment model, i.e., telehealth exposure in 

our case (Sant’Anna and Zhao 2020, Scharfstein et al. 1999). Hence DR concurrently examines the 

relationships between covariates, exposure, and outcomes, and provides a robust estimate of the impact of 

exposure on the outcomes (Scharfstein et al. 1999). We implemented a Targeted Maximum Likelihood 

Estimation (TMLE) to estimate the effect of telehealth exposure on patients’ future visits and costs (Gruber 

and Laan 2009). Our estimation results of the average treatment effect (ATE) are -0.076 with 95% CI of (-

0.091, -0,060) and -0.618 with 95% CI of (-0.683, -0.552) for future visits and costs, respectively. Our DR 

estimation shows qualitatively consistent results, suggesting that model misspecification either in the exposure 

or the outcome model, does not pose a major concern. 

7 DISCUSSION 

Technological advancements and the COVID-19 pandemic have accelerated the movement toward 

telehealth adoption and use in healthcare. Telehealth has the potential to address some of the major challenges 

facing the U.S. healthcare system with respect to runaway costs and lack of access. By using technology-

enabled platforms to deliver health care, patient information, and education, across distant locations, telehealth 

offers a promising platform to reduce health disparities, especially among disadvantaged populations. 

However, the challenges in using telehealth for specific diseases and lack of adequate empirical evidence on its 

impact on resource utilization have raised concerns, requiring a comprehensive examination of its 

effectiveness on whether and how telehealth can virtualize care (Bestsennyy et al. 2021, Huskamp et al. 2018). 

Drawing on the lens of PVT, we study the impact of telehealth on healthcare utilization by leveraging 

patient visit-level data to examine the use of telehealth in facilitating e-visits between patients and healthcare 

providers. Specifically, we observe a 13.6% reduction (or 0.15 visits) in the number of outpatient visits, equal 

to a reduction of $239 in total costs within 30 days after a telehealth visit, suggesting a substitution effect of 

telehealth. Our results reveal that these improvements can be attributed primarily to diseases with care 

processes that are more amenable to virtualization. For these patients, we observe a 12.2% (or 0.21 visits) 

reduction in the number of future outpatient visits, equivalent to a cost reduction of $179. Our result supports 
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earlier studies on telehealth use in rural areas where distance (and socio-geographic factors) still matters for 

telehealth provisioning (Chao et al. 2021, Yeow and Goh 2015). Our results are also consistent with recent 

research by Delana et al. (2022), who observed an increase in patient visits to tertiary hospitals after the 

opening of a nearby telemedicine clinic. Furthermore, we observe empirical evidence to support the 

representation and monitoring capabilities of telehealth in reducing future healthcare utilization. 

7.1 Managerial and Policy Implications 

Our paper provides actionable managerial and policy implications. Our findings with respect to the 

differential impact of telehealth based on disease virtualizability depict a striking picture. Telehealth should not 

be regarded as a one-size-fits-all solution to virtualize healthcare. Telehealth’s representation capability may 

reduce the resistance to virtualization for certain diseases, such as mental health, skin disorders, metabolic, and 

musculoskeletal disorders. Further, telehealth’s monitoring ability to control disease progression and enable 

follow-up care can lead to a displacement in the timing of healthcare utilization, reducing future visits and 

costs. However, due to the complexity of care involved, telehealth does not significantly impact the future 

resource utilization in patients with low virtualizability diseases. However, telehealth may still benefit these 

patients by providing a platform for initial screening and consultations before treatment. Our results support 

Overby et al. (2008) and suggest that contextual factors play a role in attenuating or strengthening the 

virtualization requirements of healthcare processes. 

Specifically, our results suggest two important policy prescriptions: (a) mental health, skin disorder, 

metabolic, and musculoskeletal disease patients should be encouraged to receive healthcare remotely through 

telehealth, and (b) insurance plans should expand their telehealth coverage to include more providers and close 

the healthcare access divide in rural locations, which can reduce subsequent hospitalizations and unnecessary 

costs. The Coronavirus Aid, Relief, and Economic Security (CARES) Act, signed into law in March 2020, 

loosened restrictions on telehealth services to Medicare patients to encourage greater use of telehealth 

(Delgado et al. 2020). According to the new CMS 1135 waiver, providers need not be “qualified providers,” 

nor should patients be “established patients” for Medicare to reimburse telehealth consultations.  The COVID-
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19 pandemic paved the way for greater coverage of telehealth, and these waivers are likely to reduce 

healthcare disparities, even after the pandemic. However, contextual factors, such as the breadth of diseases 

covered by telehealth reimbursement, will determine the effectiveness of such efforts. Our research identifies 

the boundary conditions under which telehealth can be effective in reducing future healthcare utilization.  

7.2 Theoretical Implications 

Our research contributes to the extant literature on PVT by examining the role of IT constructs - reach, 

representation, and monitoring - in the context of healthcare. We enrich PVT by showing that the interplay 

between disease virtualizability and telehealth capabilities, has a significant impact on successful 

implementation of process virtualization. Furthermore, our study sharpens our understanding of how and when 

processes can be virtualized and identifies the IT capabilities that are influential in a virtual healthcare setting. 

Accordingly, we address the call by Overby et al. (2010) to develop a better understanding of process 

virtualization, the boundary conditions under which care virtualization can work or fail, and the underlying 

mechanisms that explain process virtualization. By highlighting the differential impact of three types of IT 

capabilities, we shed greater light on the mechanisms that explain the impact of telehealth on resource 

utilization, based on the incidence of primary care, ED, and specialist visits, as well as overall costs.  

Our research contributes to the health IT literature by showing that telehealth use for specific diseases 

can lead to lower healthcare utilization and emphasizing the specific dimensions of telehealth capabilities that 

are instrumental in facilitating improved healthcare outcomes. Furthermore, our research represents one of the 

first comprehensive empirical studies to quantify the value of telehealth use on population health. Unlike 

earlier research on the business value of telehealth that relied on hospital- or provider-level use of telehealth, 

we use a patient visit-level dataset that provides rich insights on the implications of telehealth use on patient 

utilization across a state-wide heterogeneous population. Our results suggest that telehealth interventions can 

address some of the extant disparities in healthcare delivery and address a recent call for empirical evidence on 

the potential of telehealth to reduce healthcare costs (Burch et al. 2017). 
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7.3 Limitations and Future Directions 

Our study is subject to a few limitations. First, we examined the patient population in a single state. To 

increase its generalizability, future studies may expand its scope to include other states. However, there is no 

reason to indicate that the state of Maryland is unrepresentative of the US population at large. Second, 

although we have attempted to address potential confounding factors utilizing PSM and IV methods, we 

acknowledge that there may still exist other unobserved or confounding factors. Third, we followed the 

definition of CMS to construct our telehealth variable. Future studies may include other teleservices, such as 

home-based care through video-monitoring technologies, telemonitoring, and sensor-based mobile health, 

where telehealth may be more frequent in other contexts. Nevertheless, our study represents a significant step 

toward developing a comprehensive framework to study the economic and clinical value of telehealth that can 

be expanded to encompass other types of settings, such as home-based telehealth or remote patient monitoring. 

8 CONCLUSIONS 

We study the impact of telehealth use on healthcare utilization, across a large, state-wide patient 

population, and observe that telehealth use is associated with significant reductions in future outpatient visits 

and healthcare costs. Drawing on the lens of process virtualization theory, we unveil the underlying 

mechanisms that help us better understand the impact of telehealth on healthcare utilization. Specifically, we 

find that the representation, reach, and monitoring capabilities of telehealth provide a deeper understanding of 

process virtualization and its impact on healthcare resource utilization. For instance, the monitoring capability 

of telehealth can explain its impact on reduction in future PCP visits and costs, while its representation 

capability allows patients to seek more preventive care which, in turn, is associated with a reduction in 

specialist visits and overall costs.  

Ours is one of the first studies to provide empirical evidence on the mechanisms behind the impact of 

telehealth use on patient utilization, based on a longitudinal study of a large patient population across several 

years. Furthermore, we observe that the impact of process virtualization varies significantly based on the 

virtualizability of different disease types. Specifically, our study highlights the role of IT capabilities in 

This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=3707829

Pr
ep

rin
t n

ot
 p

ee
r r

ev
ie

wed



38 

 

enabling the differential impact of telehealth on future utilization. While the representation capabilities of 

telehealth are associated with a greater incidence of future primary care visits, they are likely to lead to fewer 

specialist visits. In a similar vein, telehealth’s monitoring capabilities are associated with a lower incidence of 

future PCP and specialist visits as well as overall costs. Our research also shows that the rural patients are 

likely to use telehealth as a gateway to utilize more PCP and specialist visits in the future, but their overall 

costs are likely to be lower. Our study provides a foundation to build on for future research on the impact of 

other tele-services including remote patient monitoring and other home-based care services.  
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Impact of Telehealth and Process Virtualization on Healthcare Utilization 

Online Appendix A   

Table A1. Comparative Analyses of Related Telehealth Research 

Literature & Journal Type Type 

Use/Adopt 

Synch.? Outcome Disease 

Research 

Method Data Context 

Cross 

Section  

or Panel 

Study 

Period 

Yan and Tan 2014 (B) 

E-health 

Use N 

New posts, health state All Empirical 
Health 2.0 website 

patients 
Panel 16weeks 

Goh et al. 2016 (B) Social support exchanges Rare disease Empirical 
An online health 

community (US) 
Cross 2005-09 

Kelley et al. 2011 (B) Adopt N 
Antecedents of the eHealth system 

use, Self-care behavior 
Chronic (Diabetes) Mixed 

Building Healthy 

Lifestyle patients 
Panel 

18 

months 

Savoli et al. 2020 (B) 

Patient portal Use N 

Self-management performance Chronic (Asthma) Mixed 
2 tertiary care hospitals 

(Canada) 
Cross NA 

Bao et al. 2020 (B) 
Hospital and ED visits, 

readmission risk, and LOS 
Chronic (CHF) Empirical 

An academic medical 

center (North Texas) 
Panel 2002-14 

Erdogan et al. 2018 (B) Telecystoscopy Adopt Y Schedule of arrival times Bladder cancer Modeling Simulated NA NA 

Korpeoglu et al. 2014 (B) Teleradiology Adopt Y Demand All Modeling 
Visits on the Virtual 

Radiologic platform 
Cross 2011-12 

Saghafian et al. 2018 (B) 
Teletriage Adopt Y 

Referral All Modeling Simulated NA NA 

Cakici and Mills 2020 (B) Cost, No of ED Visits Acute Modeling Simulated NA NA 

Singh et al. 2011 (B) 

Telemonitoring 

Adopt Y 

Post-acute care delivery 

transformation, clinical and 

financial outcomes 

All Mixed THA Group Cross 2000-09 

Liu et al. 2018 (B) Use N Readmission 
Bladder cancer 

(cystectomy) 
Modeling 

Patients from a 

regional hospital and 5 

state SID files 

Cross 
2007-12, 

2009-10 

Paul and McDaniel 2004 (B) Telehealth 

(generic) 
Adopt Y 

Access, quality, cost All Mixed 10 telehealth projects Cross NA 

Zhou et al. 2021 (B) Provider earnings, quality of care All Empirical 34% of US Physicians Panel 2012-18 

Weiner et al. 2021 (H) 
E-visit: Video, 

phone, message 
Use Y 

Ambulatory contacts, telehealth 

use 
All Empirical Private insr. patients Cross 2019-20 

Rodriguez et al. 2021 (H) 
E-visit: Video, 

phone 
Use Y 

Telehealth use, ED visit, delays in 

medical care & prescriptions 
All Empirical 

Sample of CA 

residents 
Cross 2015-18 

Darrat et al. 2021 (H) 
Patient demographics, insurance, 

socioecon. status 
Otolaryngology Empirical 

Otolaryngology Dept. 

Henry Ford HS  
Cross 2020 

Miscione 2007 (B) 
E-visit: Phone, 

message 
Use Y 

Factors impacting Telemedicine 

adoption 
All Mixed 

Upper Amazon Town 

hospitals 
Cross 2003-04 

Wang et al. 2020 (B) 
E-visit: 

Message 

Use Y 
Online consultations,  articles, 

reviews, gifts, offline visits 
All Empirical 

Health 2.0 website 

physicians 
Panel 2010-17 

Bavafa et al. 2018 (B) Adopt N No of office visits per month All Empirical 
A large healthcare 

system (US) 
Panel 2008-13 

Hwang et al. 2022 (B) 

E-visit: Phone Use Y 

Geographic healthcare disparity All Empirical 
A Telehealth company 

(China) 
Panel 2006-15 

Bakitas et al. 2020 (H) 
Quality of life, mood, paint 

intensity, pain interference 
Palliative RCT 

VA Medical Center 

(AL) 
Panel 2015-19 

Huang et al. 2021 (B) 

E-visit: Video* Adopt Y 

Online/Offline Demand, Gift, 

Rating 
All, Chronic Empirical 

Chinese Health 

Platform 
Panel 2017-18 

Sun et al. 2020 (B) ED LOS All Empirical Emergency visits (NY) Panel 2010-14 

Rajan et al. 2019 (B) Service rate, welfare, revenue Chronic Modeling Simulated NA NA 

Li et al. 2020 (B) 

E-visit: Video 
Use Y 

Patient satisfaction All Mixed 2 telecamps (India) Cross 2012 

Serrano and Karahanna 2016 

(B) 
E-consultation Diagnosticity All Mixed 

Clinicians & A 

university (US) 
Cross NA 

Yeow and Goh 2015 (B) 
Wait time uncertainty, 

admissions, no of consultations 
Acute (geriatry) Mixed 

Geriatric Dept.of a 

hospital 
Panel 2010-11 

Li et al. 2021 (H) 
No of follow up visit, ED visits, 

urgent care  

Acute (respiratory 

infections) 
Empirical 

Private insurance 

claims in a state 
Panel 2016-19 

Chao et al. 2021 (H) Telehealth use Surgical Empirical 
Private insurance 

claims in a state 
Cross 2019-20 

Bian et al. 2019 (H) Adopt Y ED visits Chronic (pediatric) Empirical South Carolina child. Panel 2012-17 

This study E-visit: Video Use Y No of OP Visits, cost in 30 days All and Chronic Empirical All visits in Maryland Panel 2012-18 

Abbreviations: B = Business journal, H = Health, medicine journal. Synch.? = Synchronous? Yes (Y) or No (N). LOS: length of stay. ED: emergency department. E-

Health: self-care programs, online support, education, training, online community. E-visit: Video. Mixed: Mixed methods entail a qualitative design followed by a 

survey, interview, case study, or empirical approach. * Authors do not specify the mode of visit. Video visit is assumed. 
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Table A2. First Stage Probit Estimation Results of IV Approach 

DV: Telehealth 

Ln(DiffDistance) 0.020*** (0.003) 

Ln(PtAge) 0.791*** (0.019) 

Ln(PtAge)2 -0.167*** (0.003) 

PtMarried 0.072*** (0.008) 

PtOther 0.129*** (0.009) 

InsMedicare 0.202*** (0.025) 

InsMedicaid 0.027 (0.024) 

InsPrivate 0.232*** (0.024) 

InsOther 0.220*** (0.029) 

Chronic 0.923*** (0.008) 

Num_Comorbidities -0.631*** (0.007) 

Ln(PastVisit365D) 0.065*** (0.002) 

%PastPCPVisit365D 0.114*** (0.007) 

%PastEDVisit365D -1.067*** (0.038) 

Ln(RVU) 0.757*** (0.005) 

Patient, Hospital, Quarter 

Fixed Effect 
Included 

Observations 2,869,541 

Pseudo R2 0.648 
Robust standard errors in parentheses 

* p < 0.10, ** p < 0.05, *** p < 0.01.    

 

Table A3. Estimated Impact of Telehealth Using Alternate Instrumental Variables 

DV: 

IV: Broadband 

Internet 

Penetration 

IV: Relative 

Telehealth Use in 

Peer Zip codes 

Ln(Visit30D) -0.147*** (0.004) -0.147*** (0.004) 

Ln(Cost30D) -0.312*** (0.021) -0.312*** (0.021) 

IV: First Stage Coeff. 0.340*** 0.001* 

IV: Under ID Test 658.369*** 1685.006*** 

IV: Weak IV Test 
196.448,  

Bias <10%† 

1.2e+04,  

Bias <10%† 

Controls Included Included 

Patient Fixed Effect Included Included 

Hospital Fixed Effect Included Included 

Quarter Fixed Effect Included Included 
* p < 0.10, ** p < 0.05, *** p < 0.01. 
† Based on maximal Stock-Yogo critical values. Regression results using 3-step IV estimation. 

Telehealth coefficients are reported in each cell. Robust standard errors in parentheses. 
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Table A4. Related Literature on Telehealth Effectiveness across Disease Types 

Disease Category Reference Consequences of Telehealth Use 
Degree of 

Virtualizability 

Endocrine, nutritional, 

and metabolic diseases 
Kelly et al. (2020) 

Improved dietary choices, effective weight management, and 

reduced cost 
High 

Mental illness Gellis et al. (2014) 
Telepsychiatry patients experience lower depression scores 

due to reinforced self-efficacy and counseling 
High 

Diseases of the skin 

and subcutaneous 

tissue 

Yeroushalmi et al. 

(2021) 

Patients could be provided specialist diagnosis and disease 

management advice 
High 

Diseases of the 

musculoskeletal 

system 

Howard and 

Kaufman (2018) 

A distant specialist can guide the telepresenter during a 

virtual physical exam 
High 

Infectious and 

parasitic diseases 

Assimacopoulos et 

al. (2008) 

Infectious disease specialist treatment is equally effective 

when delivered via telehealth as when delivered via in-

person 

Medium 

Neoplasms 
Blackwood and 

Rybicki (2021) 

Limited evidence regarding satisfactory outcomes of 

telehealth-delivered physical activity programs in cancer 

survivors 

Low 

Diseases of the blood 

and blood-forming 

organs 

Shaner et al. (2021) 
Telehealth did not show any difference in laboratory 

response to hydroxyurea for patients with sickle cell anemia. 
Medium 

Diseases of the 

nervous system and 

sense organs 

Chen et al. (2020) 

Telehealth intervention lowered motor impairment of 

Parkinson’s Disease patients but had no impact on mental 

status or quality of life. 

Medium 

Diseases of the 

circulatory system 

Grustam et al. 

(2014) 

Telehealth’s cost-effectiveness in chronic heart failure 

remains unknown in peer-reviewed literature. 
Low 

Diseases of the 

respiratory system 
Bakhit et al. (2021) 

Telehealth can lead to increases in healthcare resource 

utilization such as antibiotic prescription for acute infections. 
Low 

Diseases of the 

digestive system 

Wegermann et al. 

(2022) 

Telehealth use for liver disease treatment of vulnerable 

populations increased the risk of telephone visits compared 

to video visits  

Low 

Diseases of the 

genitourinary system 

Lunney et al. 

(2018) 

Telehealth interventions showed mixed or insignificant 

results on processes of care and laboratory surrogate markers 

of end-stage renal disease care. 

Medium 

Complications of 

pregnancy, childbirth 
Öztürk et al. (2022) 

Telehealth and routine care yielded similar maternal/neonatal 

health and cost outcomes. 
Medium 

Congenital anomalies Cooper et al. (2020) 

Telehealth home monitoring program intervention for 

congenital heart disease was not associated with an 

improvement in parent or infant outcomes. 

Medium 

Certain conditions 

originating in the 

perinatal 

Duryea et al. (2021) 

After the implementation of audio-only prenatal virtual 

visits, women who delivered did not show more adverse 

pregnancy outcomes than women who delivered before the 

implementation 

Medium 

Injury and poisoning 
Cummins et al. 

(2013) 

Inefficiencies and vulnerabilities occur in telephone-based 

poison control centers– emergency department 

communication. 

Low 

This table only contains illustrative examples of current literature on telehealth.  
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Table A5. Expert Rating of Disease Categories on Telehealth’s Ability to Virtualize Care Processes 

 Telehealth’s Ability to Virtualize Care 

Disease Category: Reach Monitoring Represent. Overall 

Endocrine, nutritional, and metabolic diseases  H H H H 

Mental illness  H H H H 

Diseases of the skin and subcutaneous tissue  H H H H 

Diseases of the musculoskeletal system H H H H 

Infectious and parasitic diseases  L L L L 

Neoplasms  L H L L 

Diseases of the blood and blood-forming organs  L L L L 

Diseases of the nervous system and sense organs  L L L L 

Diseases of the circulatory system  L H L L 

Diseases of the respiratory system  H L L L 

Diseases of the digestive system  L L L L 

Diseases of the genitourinary system  L L L L 

Complications of pregnancy, childbirth L L L L 

Congenital anomalies L L L L 

Certain conditions originating in the perinatal L L L L 

Injury and poisoning L L L L 
Survey data based on practitioner feedback collected primarily from a leading academic medical center in the U.S. 

H refers to high ability when the average response score for a specific disease and telehealth ability combination is more than the overall average 

response plus 0.5 standard deviation.  

L refers to low ability and is given if the average score is less than the overall average response plus 0.5 standard deviation for a specific disease and 

telehealth ability combination. 

Overall takes H (L) if two out of three abilities are rated H (L) for a specific disease.  

 

Appendix References 

Assimacopoulos A, Alam R, Arbo M, Nazir J, Chen DG, Weaver S, Dahler-Penticoff M, Knobloch K, 

DeVany M, Ageton C (2008) A Brief Retrospective Review of Medical Records Comparing Outcomes for 

Inpatients Treated via Telehealth Versus In-Person Protocols: Is Telehealth Equally Effective as In-Person 

Visits for Treating Neutropenic Fever, Bacterial Pneumonia, and Infected Bacterial Wounds? Telemedicine 

and e-Health 14(8):762–768. 

Bakhit M, Baillie E, Krzyzaniak N, van Driel M, Clark J, Glasziou P, Del Mar C (2021) Antibiotic prescribing 

for acute infections in synchronous telehealth consultations: a systematic review and meta-analysis. BJGP 

open 5(6). 

Bian J, Cristaldi KK, Summer AP, Su Z, Marsden J, Mauldin PD, McElligott JT (2019) Association of a 

School-Based, Asthma-Focused Telehealth Program with Emergency Department Visits Among Children 

Enrolled in South Carolina Medicaid. JAMA Pediatrics 173(11):1041–1048. 

Blackwood J, Rybicki K (2021) Outcomes of Telehealth-Delivered Physical Activity Programs in Adult 

Cancer Survivors: A Systematic Review. Rehabilitation Oncology 39(3):128-136(9). 

Chen YY, Guan BS, Li ZK, Yang QH, Xu TJ, Li HB, Wu QY (2020) Application of telehealth intervention in 

Parkinson’s disease: A systematic review and meta-analysis. Journal of Telemedicine and Telecare 26(1–

2):3–13. 

Cooper BM, Marino BS, Fleck DA, Lisanti AJ, Golfenshtein N, Ravishankar C, Costello JM, Huang L, 

Hanlon AL, Curley MAQ (2020) Telehealth Home Monitoring and Postcardiac Surgery for Congenital 

Heart Disease. Pediatrics 146(3):e20200531. 

Cummins MR, Crouch B, Gesteland P, Wyckoff A, Allen T, Muthukutty A, Palmer R, Peelay J, Repko K 

(2013) Inefficiencies and vulnerabilities of telephone-based communication between U. S. poison control 

centers and emergency departments. Clinical Toxicology 51(5):435–443. 

This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=3707829

Pr
ep

rin
t n

ot
 p

ee
r r

ev
ie

wed



48 

 

Darrat I, Tam S, Boulis M, Williams AM (2021) Socioeconomic Disparities in Patient Use of Telehealth 

During the Coronavirus Disease 2019 Surge. JAMA Otolaryngology–Head & Neck Surgery 147(3):287–

295. 

Duryea EL, Adhikari EH, Ambia A, Spong C, McIntire D, Nelson DB (2021) Comparison Between In-Person 

and Audio-Only Virtual Prenatal Visits and Perinatal Outcomes. JAMA Network Open 4(4):e215854. 

Huang N, Yan Z, Yin H (2021) Effects of Online–Offline Service Integration on e-Healthcare Providers: A 

Quasi-Natural Experiment. Production and Operations Management. 

Grustam AS, Severens JL, van Nijnatten J, Koymans R, Vrijhoef HJ (2014) Cost-effectiveness of telehealth 

interventions for chronic heart failure patients: a literature review. International journal of technology 

assessment in health care 30(1):59–68. 

Kelly JT, Allman-Farinelli M, Chen J, Partridge SR, Collins C, Rollo M, Haslam R, Diversi T, Campbell KL 

(2020) Dietitians Australia position statement on telehealth. Nutrition & Dietetics 77(4):406–415. 

Lunney M, Lee R, Tang K, Wiebe N, Bello AK, Thomas C, Rabi D, Tonelli M, James MT (2018) Impact of 

Telehealth Interventions on Processes and Quality of Care for Patients With ESRD. American Journal of 

Kidney Diseases 72(4):592–600. 

Öztürk GG, Akyıldız D, Karaçam Z (2022) The impact of telehealth applications on pregnancy outcomes and 

costs in high-risk pregnancy: A systematic review and meta-analysis. J Telemed 

Telecare:1357633X221087867. 

Saghafian S, Hopp WJ, Iravani SMR, Cheng Y, Diermeier D (2018) Workload Management in Telemedical 

Physician Triage and Other Knowledge-Based Service Systems. Management Science 64(11):5180–5197. 

Shaner S, Hilliard L, Howard T, Pernell B, Bhatia S, Lebensburger J (2021) Impact of telehealth visits on 

hydroxyurea response in sickle cell anemia. Pediatric Blood & Cancer 68(12):e29354. 

Wang L, Yan L, Zhou T, Guo X, Heim GR (2020) Understanding Physicians’ Online-Offline Behavior 

Dynamics: An Empirical Study. Information Systems Research 31(2):537–555 

Wegermann K, Wilder JM, Parish A, Niedzwiecki D, Gellad ZF, Muir AJ, Patel YA (2022) Racial and 

socioeconomic disparities in utilization of telehealth in patients with liver disease during COVID-19. 

Digestive diseases and sciences 67(1):93–99. 

Zhou M, Li X, Burtch G (2021) Healthcare across Boundaries: Urban-Rural Differences in the Financial and 

Healthcare Consequences of Telehealth Adoption (Social Science Research Network, NY).  

 

  

This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=3707829

Pr
ep

rin
t n

ot
 p

ee
r r

ev
ie

wed



49 

 

Online Appendix B 

Figure B1. High vs Low Representation Encounters: 30 Day Cost Analysis by Visit Type and Year 

  
 

Table B1. Summary of Matching Criteria Used in CEM Approach 

Name # of Categories Categories 

Patient Age 6 0-7; 8-18; 19-35; 36-50; 51-65; 66+ 

Patient Marital Status 3 Married; Other; Single 

Patient Race 3 Black; Other; White 

Patient Sex 3 Female; Male; Other 

Insurance 5 Medicare; Medicaid; Other; Private; Selfpay 

Number of Comorbidities 3 0; 1; 2+ 

Past Visits within 365 days 6 0; 1; 1-6; 7-17; 18-32; 32+ 

  

Table B2. Variable Imbalance Statistics Before and After CEM 
 

Before CEM 

L1 = 0.468 

After CEM 

L1 = 0.330 

Matching Variables: 
Mean Difference 

(Treatment – Control) 
L1 

Mean Difference 

(Treatment – Control) 
L1 

PtAge 7.986 0.187 -0.006 0.052 

PtMarried 0.082 0.082 0.000 0.000 

PtMariStatOther 0.021 0.021 0.000 0.000 

PtSingle -0.103 0.103 0.000 0.000 

PtRaceBlack 0.091 0.091 0.000 0.000 

PtRaceOther -0.050 0.050 0.000 0.000 

PtRaceWhite -0.041 0.041 0.000 0.000 

PtFemale 0.009 0.009 0.000 0.000 

PtSexUnknown 0.000 0.000 0.000 0.000 

PtMale -0.009 0.009 0.000 0.000 

InsMedicare 0.072 0.072 -0.014 0.014 

InsMedicaid -0.012 0.012 0.109 0.109 

InsPrivate -0.059 0.059 -0.084 0.084 

InsOther -0.003 0.003 -0.009 0.009 

InsSelfpay 0.003 0.003 -0.002 0.002 

Num_Comorbidities 0.263 0.200 0.001 0.000 

PastVisit365D -2.658 0.247 1.239 0.039 
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Table B3. Estimation Results for Healthcare Utilization using Coarsened Exact Matching 

DV: Ln(Visit30D) Ln(Cost30D) 

Telehealth -0.267*** (0.008) -0.162*** (0.033) 

Ln(PtAge) 0.034*** (0.004) 0.386*** (0.016) 

Ln(PtAge)2 -0.010*** (0.001) -0.076*** (0.003) 

PtMarried 0.003* (0.002) 0.089*** (0.008) 

PtOther 0.017*** (0.002) -0.024*** (0.009) 

PtRaceBlack -0.029*** (0.001) -0.112*** (0.006) 

PtRaceOther 0.003 (0.002) -0.007 (0.008) 

PtFemale -0.010*** (0.001) 0.044*** (0.005) 

InsMedicare -0.040*** (0.006) 0.288*** (0.025) 

InsMedicaid 0.136*** (0.006) 0.466*** (0.024) 

InsPrivate 0.008 (0.006) 0.454*** (0.024) 

InsOther 0.098*** (0.007) 0.639*** (0.029) 

Chronic -0.016*** (0.002) 0.633*** (0.007) 

Num_Comorbidities 0.084*** (0.002) 0.216*** (0.007) 

Ln(PastVisit365D) 0.256*** (0.001) 1.081*** (0.003) 

%PastPCPVisit365D -0.181*** (0.002) -0.458*** (0.007) 

%PastEDVisit365D -0.097*** (0.009) -0.392*** (0.039) 

Ln(RVU) -0.059*** (0.003) -0.033*** (0.011) 

Constant 0.297*** (0.009) 0.326*** (0.040) 

Patient Time-invariant 

Effects† 
Included Included 

Patient Fixed Effects Not Included Not Included 

Hospital Fixed Effect Included Included 

Quarter Fixed Effect Included Included 

Observations 1,204,230 1,204,230 

R2 0.445 0.383 
Standard errors in parentheses. * p < 0.10, ** p < 0.05, *** p < 0.01. 
†As the observations are weighted by their CEM propensity scores, patient fixed effects became collinear 

with the binary treatment variable, Telehealth. Hence, we included time-invariant patient effects, race and 

gender  
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Table B4. Estimation of Healthcare Utilization using Heckman Selection  

DV: Ln(Visit90D) Ln(Cost90D) 

Telehealth -0.121*** (0.010) -0.229*** (0.031) 

Ln(PtAge) 0.023** (0.010) 0.086** (0.035) 

Ln(PtAge)2 -0.010*** (0.004) -0.029** (0.012) 

PtMarried -0.008 (0.006) -0.011 (0.019) 

PtOther 0.007 (0.006) -0.003 (0.017) 

InsMedicare -0.107*** (0.011) 0.061** (0.027) 

InsMedicaid 0.047*** (0.008) 0.237*** (0.021) 

InsPrivate -0.015* (0.008) 0.236*** (0.023) 

InsOther 0.105*** (0.013) 0.416*** (0.034) 

Chronic 0.081*** (0.002) 0.774*** (0.008) 

Num_Comorbidities -0.015*** (0.001) -0.106*** (0.006) 

Ln(PastVisit365D) 0.167*** (0.002) 0.930*** (0.005) 

%PastPCPVisit365D -0.143*** (0.003) -0.424*** (0.008) 

%PastEDVisit365D -0.089*** (0.004) -0.258*** (0.018) 

Ln(RVU) -0.022*** (0.002) 0.009* (0.005) 

MillsRatio 0.066*** (0.006) 0.162*** (0.019) 

Constant 0.300*** (0.029) 1.357*** (0.092) 

Patient, Hospital, Quarter Fixed Effect Included Included 

Observations 2,874,463 2,874,463 

R2 0.159 0.149 
Standard errors in parentheses. * p < 0.10, ** p < 0.05, *** p < 0.01. 

 

Table B5. Estimation of Healthcare Utilization within a 90-day window 

DV: Ln(Visit90D) Ln(Cost90D) 

Telehealth -0.233*** (0.005) -0.625*** (0.022) 

Ln(PtAge) 0.042*** (0.004) 0.034 (0.023) 

Ln(PtAge)2 -0.013*** (0.001) -0.018*** (0.007) 

PtMarried -0.012*** (0.002) -0.011 (0.011) 

PtOther 0.009*** (0.002) -0.016 (0.010) 

InsMedicare -0.097*** (0.003) 0.287*** (0.015) 

InsMedicaid 0.069*** (0.003) 0.345*** (0.013) 

InsPrivate 0.008** (0.003) 0.366*** (0.014) 

InsOther 0.100*** (0.004) 0.431*** (0.017) 

Chronic 0.208*** (0.001) 1.372*** (0.004) 

Num_Comorbidities -0.043*** (0.001) -0.179*** (0.004) 

Ln(PastVisit365D) 0.288*** (0.001) 1.179*** (0.002) 

%PastPCPVisit365D -0.133*** (0.001) -0.069*** (0.005) 

%PastEDVisit365D -0.144*** (0.002) -0.245*** (0.012) 

Ln(RVU) 0.007*** (0.001) 0.137*** (0.003) 

Patient, Hospital, Quarter Fixed Effect Included Included 

Observations 2,869,541 2,869,541 

R2 0.233 0.225 
Standard errors in parentheses. * p < 0.10, ** p < 0.05, *** p < 0.01. 
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Table B6. Impact of Telehealth on Healthcare Utilization prior to 2020 (i.e., pre-COVID-19) 

DV: Ln(Visit30D) Ln(Cost30D) 

Telehealth -0.606*** (0.018) -2.011*** (0.086) 

Ln(PtAge) 0.011 (0.013) 0.884*** (0.057) 

Ln(PtAge)2 0.001 (0.002) -0.187*** (0.010) 

PtMarried 0.003 (0.008) 0.085*** (0.029) 

PtOther 0.028*** (0.007) 0.043* (0.025) 

InsMedicare -0.217*** (0.020) 0.272*** (0.075) 

InsMedicaid 0.067*** (0.020) 0.194*** (0.074) 

InsPrivate -0.131*** (0.021) 0.315*** (0.076) 

InsOther -0.093*** (0.023) 0.524*** (0.086) 

Chronic 0.090*** (0.005) 1.457*** (0.024) 

Num_Comorbidities 0.001 (0.004) -0.119*** (0.021) 

Ln(PastVisit365D) 0.351*** (0.002) 1.064*** (0.007) 

%PastPCPVisit365D -0.354*** (0.006) -0.906*** (0.032) 

%PastEDVisit365D -0.145*** (0.013) -0.197*** (0.073) 

Ln(RVU) -0.123*** (0.005) -0.047*** (0.017) 

Patient Fixed Effect Included Included 

Hospital Fixed Effect Included Included 

Quarter Fixed Effect Included Included 

Observations 98,137 98,137 

R2 0.360 0.318 
Standard errors in parentheses 

* p < 0.10, ** p < 0.05, *** p < 0.01. 

 

Table B7. Falsification Test Results 

 (1) 

Only non-

telehealth patients 

(2) 

Randomize by 

patient 

(3) 

Randomize by  

zip code 

(4) 

Randomize by zip code 

and insurance status 

DV: Ln(Visit30D) Ln(Visit30D) Ln(Visit30D) Ln(Visit30D) 

Telehealth -74.284 (169.821) 64.230 (65.678) 23.225 (17.213) -690.212 (15890.365) 

Patient, Hospital, 

Quarter Fixed Effect 

Included Included Included Included 

Observations 1,575,365 2,869,541 2,869,541 2,869,541 

DV: Ln(Cost30D) Ln(Cost30D) Ln(Cost30D) Ln(Cost30D) 

Telehealth -239.531 (548.139) -53.817 (55.925) 116.360 (86.393) -3066.110 (70589.522) 

Patient, Hospital, 

Quarter Fixed Effect 

Included Included Included Included 

Observations 1,575,365 2,869,541 2,869,541 2,869,541 
Robust standard errors are in parentheses 

* p<0.10, ** p<0.05, *** p<0.01 
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