
Nature | www.nature.com | 1

Article

Health system-scale language models are 
all-purpose prediction engines
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Duo Wang5, Anas Abidin4, Kevin Eaton6, Howard Antony Riina1, Ilya Laufer1, Paawan Punjabi6, 
Madeline Miceli6, Nora C. Kim1, Cordelia Orillac1, Zane Schnurman1, Christopher Livia1, 
Hannah Weiss1, David Kurland1, Sean Neifert1, Yosef Dastagirzada1, Douglas Kondziolka1, 
Alexander T. M. Cheung1, Grace Yang1,2, Ming Cao1,2, Mona Flores4, Anthony B. Costa4, 
Yindalon Aphinyanaphongs5,7, Kyunghyun Cho2,8,9,10 & Eric Karl Oermann1,2,11 ✉

Physicians make critical time-constrained decisions every day. Clinical predictive 
models can help physicians and administrators make decisions by forecasting clinical 
and operational events. Existing structured data-based clinical predictive models 
have limited use in everyday practice owing to complexity in data processing, as  
well as model development and deployment1–3. Here we show that unstructured 
clinical notes from the electronic health record can enable the training of clinical 
language models, which can be used as all-purpose clinical predictive engines  
with low-resistance development and deployment. Our approach leverages recent 
advances in natural language processing4,5 to train a large language model for medical 
language (NYUTron) and subsequently fine-tune it across a wide range of clinical and 
operational predictive tasks. We evaluated our approach within our health system  
for five such tasks: 30-day all-cause readmission prediction, in-hospital mortality 
prediction, comorbidity index prediction, length of stay prediction, and insurance 
denial prediction. We show that NYUTron has an area under the curve (AUC) of  
78.7–94.9%, with an improvement of 5.36–14.7% in the AUC compared with traditional 
models. We additionally demonstrate the benefits of pretraining with clinical text,  
the potential for increasing generalizability to different sites through fine-tuning and 
the full deployment of our system in a prospective, single-arm trial. These results 
show the potential for using clinical language models in medicine to read alongside 
physicians and provide guidance at the point of care.

Physicians make difficult decisions every day requiring the integra-
tion of a tremendous amount of information. The information needed 
to make these medical decisions is scattered across various records, 
for example, a patient’s medical history and laboratory and imaging 
reports. When physicians perform their work, however, all of this infor-
mation is ultimately integrated into the notes written by physicians to 
document and summarize patient care.

Clinical predictive models are frequently derived from rules that have 
existed for decades6–9, as well as from machine learning methods10–12, 
with most relying on structured inputs pulled from the electronic health 
record (EHR) or direct clinician inputs. This reliance on structured 
inputs introduces complexity in data processing, as well as in model 
development and deployment, which in part is responsible for the 
overwhelming majority of medical predictive algorithms being trained, 
tested and published, yet never deployed to assess their impact on 
real-world clinical care. This is frequently referred to as the ‘last-mile 
problem’ (refs. 1–3).

One of the most exciting recent developments in modern artificial 
intelligence (AI) research is large language models (LLMs). These mas-
sive neural networks (with millions or even billions of parameters) have 
been shown to obtain impactful results on a wide range of problems that 
rely on the reading and interpretation of human language. Several styles 
of LLMs have been developed over the past few years, broadly ranging 
from encoder models (such as BERT4) to decoder models (such as GPT3; 
ref. 5). We theorized that LLMs could potentially solve the last-mile 
problem in medical predictive analytics by simply reading the notes 
written by physicians, thereby immediately accessing a comprehensive 
description of a patient’s medical state to provide decision support at 
the point of care across a wide range of clinical and operational tasks.

Here we present our results from developing, evaluating, deploying 
and prospectively assessing NYUTron, an LLM-based system that can 
integrate in real time with clinical workflows centred around writing 
notes and placing electronic orders. Our approach relies on the fact that 
all clinically useful data and medical professionals’ decision-making 
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processes can be found as structured or unstructured text in the EHR 
(for example, as notes, laboratory results and reports on studies). Our 
approach leverages recent advances in natural language processing 
that suggest that sufficiently scaled, self-supervised LLMs can out-
perform strongly supervised approaches on non-medical predictive 
tasks4,5,13. We investigate our hypothesis in the NYU Langone Health 
System (‘NYU Langone’), a large multi-borough hospital system with 
a diverse patient population in New York, with 4 urban hospitals and 
350 outpatient sites. We assess NYUTron on a battery of five tasks, 
including three clinical and two operational tasks (30-day all-cause 
readmission prediction, in-hospital mortality prediction, comorbidity 
index prediction, length of stay (LOS) prediction and insurance denial 
prediction) and provide a detailed analysis of our 30-day readmission 
task to look at questions of data efficiency, generalizability, deployabil-
ity and potential clinical impact. By rethinking all of medical predictive 
analytics (see Supplementary Information section 1.1 for previous 
works) as a natural language processing problem, we show that it is 
possible to use LLMs as universal prediction engines for a wide range 
of medical predictive tasks.

Language model-based clinical prediction
Our language model-based approach has four steps: data collection, 
pretraining, fine-tuning and deployment. In the first step (Fig. 1a), we 
collected a vast set of unlabelled clinical notes and five task-specific 

labelled clinical notes from the NYU Langone EHR. Unlike other studies, 
our datasets come from the entire hospital system with a diverse patient 
population from different clinical departments. Our large unlabelled 
dataset, ‘NYU Notes’, comprises 7.25 million clinical notes (for exam-
ple, radiographic reads, history and physicals) from 387,144 patients 
across four hospitals, resulting in a 4.1 billion-word corpus curated 
from January 2011 to May 2020. Each one of our labelled fine-tuning 
sets contains 1–10 years of inpatient clinical notes (55,791–413,845 
patients, 51–87 million words) with task-specific labels (2–4 classes). 
See Extended Data Table 1 for dataset statistics.

In the second and third steps (Fig. 1b,c), we pretrained and fine-tuned 
an LLM for each downstream task using a bidirectional encoder model 
known as BERT (Bidirectional Encoder Representation with Trans-
former) and a masked language modelling (MLM) objective on the 
NYU Notes dataset11 until the validation loss plateaued. The MLM objec-
tive randomly masks words or subwords in clinical notes and trains 
the language model to fill in the masked word correctly. Next, using 
the fine-tuning dataset, we fine-tuned the pretrained model (termed 
‘NYUTron’) to predict the task label using the relationships learned in 
pretraining with clinical notes.

In the fourth step (Fig.  1d), we deployed our best model to a 
high-performance inference engine, NYUTriton, that interfaces with 
the NYU Langone EHR. Deployment enabled real-time LLM-guided 
inference at the point of care. In a single-arm, non-interventional, 
prospective trial, we validated NYUTron’s performance on 30-day 
readmission prediction in a real-world environment and assessed its 
potential clinical impacts.

Overall performance on five tasks
To assess the breadth of NYUTron’s applicability, we evaluated 
NYUTron’s performance on five tasks retrospectively. We trained 
with the full dataset and evaluated performance with two test sets: (1) 
a random test set (clinical notes sampled from the same time as the 
training data) and (2) a temporal test set (clinical notes sampled from 
the future of the training data). The temporal test set more closely 
resembles the deployment scenario, in which inference data come 
from the future of the training data. Our battery of tasks consisted 
of three clinical tasks and two operational tasks, as shown in Fig. 2a. 
We compared NYUTron against structured baselines, which forward 
structured features used by traditional clinical predictive models into 
an extreme gradient-boosted tree14 model.

NYUTron is capable of being extended to multiple clinical and 
operational tasks. Figure 2b and Fig. 2c show that, on prediction 
tasks (in-hospital mortality, readmission, LOS and insurance denial), 
NYUTron had an area under the curve (AUC) of 78.7–94.9%, with an 
improvement of 5.36–14.7% in AUC from traditional clinical predictive 
models. On the comorbidity index imputation task, NYUTron had a 
median AUC of 89.4% ± 0.275%. We first present our results across four 
of the tasks and conclude with a focused look at readmission prediction 
that addresses questions of data efficiency, model generalizability and 
deployment in a real-world environment.

NYUTron is capable of predicting risk of in-hospital mortality on 
admission and imputing a comorbidity index. The task of in-hospital 
mortality prediction was to estimate (at admission) the likelihood of a 
patient’s death during the present inpatient encounter. Figure 2b shows 
that, for in-hospital mortality prediction, NYUTron had a median AUC 
of 94.9% ± 0.168%, with a 7.43% improvement from its structured base-
line based on Simplified Acute Physiology Score (SAPS2)15 and Acute 
Physiology and Chronic Health Evaluation (APACHE2)16 features such 
as age and mean heart rate. The task of comorbidity index imputation 
was to predict (at admission) the Charlson comorbidity index (CCI)17 
with no available structured features for chronic diseases. We framed 
this as a data imputation problem, as 22% of our dataset lacked CCI 
scores and this was a known area for documentation improvement 
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Fig. 1 | Overview of the language model-based approach for clinical 
prediction. a, We queried the NYU Langone EHR for two types of datasets.  
The pretraining dataset, NYU Notes, contains 10 years of inpatient clinical 
notes (387,144 patients, 4.1 billion words). There are five fine-tuning datasets. 
Each contains 1–10 years of inpatient clinical notes (55,791–413,845 patients, 
51–87 million words) with task-specific labels (2–4 classes). b, We pretrained a 
109 million-parameter BERT-like LLM, termed NYUTron, on the entire EHR 
using an MLM task to create a pretrained model for medical language 
contained within the EHR. c, We subsequently fine-tuned the pretrained model 
on specific tasks (for example, 30-day all-cause readmission prediction) and 
validated it on held-out retrospective data. d, Lastly, the fine-tuned model was 
compressed into an accelerated format and loaded into an inference engine, 
which interfaces with the NYU Langone EHR to read discharge notes when they 
are signed by treating physicians.
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(see Supplementary Information section 2.3 for more context). We 
discretized the index into four bins according to the original paper’s 
grades of severity (0, none; 1–2, mild; 3–4, moderate; ≥5, severe).  
Figure 2b shows that, on comorbidity imputation, NYUTron had a 
median AUC of 89.4% ± 0.275% and 88% precision when identifying 
patients whose CCI score was 0.

NYUTron can also be used for operational endpoints and to predict 
in-patient LOS and insurance claim denial on admission. The task of 
LOS prediction was to predict (at admission) the likely range of days 

a patient would stay in the hospital. We discretized LOS into four bins 
(0–25% quantile, 25–50% quantile, 50–75% quantile, >75% quantile). 
Figure 2c shows that, for LOS prediction, NYUTron had a median 
one-versus-rest (OVR) AUC of 78.7% ± 0.179%, with a 12.3% improvement 
from the structured baseline, which used an available subset of ‘Lisbon 
Portugal’ features18. The task of insurance claim denial prediction was 
to predict (at admission) whether the insurance claims submitted for 
an encounter would be accepted or initially denied. Figure 2c shows 
that, for insurance denial prediction, NYUTron had a median AUC of 
87.2% ± 0.246%, with a 14.7% improvement from the structured baseline, 
which used an available subset of ‘claim form’ features19 such as age 
and insurance provider. NYUTron is also capable of predicting differ-
ent types of denials from both admission notes and discharge notes 
with similar performance (Supplementary Information section 2.2).

Detailed analysis on readmission
To better understand NYUTron’s performance, we carried out a 
detailed analysis of 30-day all-cause readmission prediction. The task 
of readmission prediction is to predict (at discharge) the likelihood of 
a patient coming back to the hospital within 30 days and is a well-studied 
problem in the medical informatics literature (see Supplementary 
Information section 2.1 for more details on the readmission predic-
tion task). Figure 2b shows that, for 30-day all-cause readmission pre-
diction, NYUTron had a median AUC of 79.87% ± 0.168%, with a 5.36% 
improvement from its structured baseline, which used LACE20 features 
(a mnemonic for LOS, acuity of admission, Charlson comorbidity index 
and number of emergency department visits in the past 6 months). 
We performed five additional evaluations in both retrospective and 
prospective settings: (1) a human comparison with six attending phy-
sicians for prediction of readmission for 20 patient cases sampled 
from a random split, (2) a study of NYUTron’s scaling properties with 
respect to data in which NYUTron and other models were compared 
using a different number of fine-tuned data points, (3) an assessment 
of NYUTron’s cross-site generalizability using pretraining, fine-tuning 
and test data from different locations, (4) a prospective, single-arm, 
non-interventional study to evaluate NYUTron’s deployability and (5) 
a qualitative evaluation by a physician panel of NYUTron’s prospective 
performance to assess clinical impacts.

Retrospective study of readmission
On small samples, NYUTron was competitive with a small group of phy-
sicians at predicting 30-day readmission. We tested a group of six physi-
cians at different levels of seniority against NYUTron in a head-to-head 
comparison to establish a baseline difficulty for predicting 30-day 
all-cause readmission at the time of discharge. Discharge summaries 
(n = 20, including 11 positive cases and 9 negative cases) were sam-
pled from a random split and uploaded to an online evaluation plat-
form. Median physician performance was worse than that of NYUTron 
(Fig. 3a). For physicians and NYUTron, the median false positive rate 
(FPR) was 11.11%, whereas the median true positive rate (TPR) was 50% 
for physicians compared with 81.82% for NYUTron. Physicians had a 
median F1 score of 62.8% and substantial variance of 22.2% compared 
with NYUTron, which had a median F1 score of 77.8%.

The random split does not resemble the deployment scenario, in 
which the test data come from the future of the training data. We there-
fore created a temporal split to simulate deployment and observed a 
meaningful difference in test statistics compared with the random 
split (the random test AUC was 84.13%, whereas the temporal test AUC 
was 80.2%), confirming the importance of this second testing phase 
(further comparison in Extended Data Fig. 1).

NYUTron is competitive with traditional models and other LLMs. 
We evaluated the effectiveness of NYUTron by comparing its test 
performance on the temporal split against that of a traditional model 
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Fig. 2 | Overall temporal test performance across five tasks. a, The five  
tasks include three clinical tasks and two operational tasks. b, On readmission 
prediction, NYUTron had a median AUC of 79.9% ± 0.168% with a 5.36% 
improvement. On in-hospital mortality prediction, NYUTron had a median  
AUC of 94.9% ± 0.168% with a 7.43% improvement. On comorbidity index 
imputation, NYUTron had an OVR median AUC of 89.4% ± 0.275%. A confusion 
matrix is shown on the right. c, On binned LOS prediction, NYUTron had a 
median AUC of 78.7% ± 0.179% with a 12.3% improvement from the structured 
baseline. On insurance denial prediction, NYUTron had a median AUC of 
87.2% ± 0.246% with a 14.7% improvement. For b,c, the height of the error bar is 
the median AUC and the half-width of the error bar is 1 s.d. The grey points are 
individual data points from n = 5 experiments using distinct random seeds.
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and four different types of LLMs. NYUTron had the highest AUC 
when fine-tuned with the full dataset (Fig. 3b), with a median AUC of 
79.87% ± 0.17%, which was similar to the clinical+web-wiki+bio AUC 
of 80.14% ± 0.26%. Compared with LLMs pretrained with non-clinical 
text (web-wiki+bio and web-wiki), NYUTron’s median AUC was 2.37% to 
3.23% higher. Compared with the traditional model that uses structured 
features (lace+xgb), NYUTron had a 5.36% higher AUC. Compared with 
a model using traditional natural language processing (NLP) embed-
ding (tf-idf+xgb), NYUTron had a 12.8% higher median AUC (Extended 
Data Fig. 2a).

An LLM trained on unstructured clinical notes better scales with data 
than traditional structured models. Compared with lace+xgb, NYUTron 
benefits from an increasing amount of labelled examples and achieved 
a better AUC when fine-tuned with the full dataset. Figure 3b shows 
that lace+xgb (dashed yellow line) and NYUTron (solid green line) had 
similar AUCs at 100 and 1,000 examples. However, NYUTron’s AUC con-
sistently improved with more examples whereas lace+xgb’s AUC started 
to plateau (from 100 to 1,000 examples, NYUTron’s AUC increased by 
7.27% whereas that of lace+xgb increased by 3.98%; from 10,000 to 
392,336 examples, NYUTron’s AUC increased by 2.15% whereas that 
of lace+xgb increased by 0.63%). With the full fine-tuning dataset, 
NYUTron had a 7.04% higher AUC than lace+xgb.

Pretraining on a large amount of unlabelled clinical notes contrib-
utes to performance. Compared with the randomly initialized LLM 
(random-init), NYUTron learns to generalize better from fewer exam-
ples. Figure 3b shows that, whereas NYUTron needed 10,000 examples 
to achieve an AUC of around 75%, random-init needed 100,000 exam-
ples. We also observed a similar trend in another clinical prediction 
task: NYUTron performed better than the random-init model (36.83% 
higher F1 score) and the non-clinically pretrained models (2.06% to 
3.73% higher F1 score) on the clinical named entity recognition (NER) 
task from the 2012 i2b2 challenge (Extended Data Fig. 2b).

It is beneficial to match the domain of the pretraining corpus and 
the domain of the fine-tuning corpus. Figure 3b shows three pieces 
of evidence: LLMs pretrained on non-clinical text (web-wiki and 

web-wiki+bio) had similar performance as random-init. A separate 
LLM, web-wiki+bio+clinical, had similar performance as NYUTron. 
Third, compared with LLMs pretrained on non-clinical text (web-wiki 
and web-wiki+bio), clinically pretrained LLMs (NYUTron and 
web-wiki+bio+clinical) learned to generalize better from fewer exam-
ples. See Extended Data Fig. 3 for comparison of the pretraining corpus.

Having a close domain match during pretraining is particularly 
beneficial in the low-data setting during fine-tuning. We compared 
two language models that were pretrained on clinical text from 
different hospital systems, NYUTron (NYU Langone Health) and 
web-wiki+bio+clinical (University of Florida). Figure 3b shows that, 
at 1,000 examples, NYUTron (the in-domain model) had a higher AUC 
for NYU Langone readmission prediction than web-wiki+bio+clinical 
(the out-of-domain model). Notably, NYUTron’s advantage disappeared 
as the number of fine-tuning examples increased, suggesting that suf-
ficient in-domain fine-tuning can adapt models that were pretrained 
out of domain.

Clinical language models show generalizability to different sites 
through local fine-tuning. To investigate the robustness of NYUTron 
across clinical environments, we chose two hospitals that are geo-
graphically separated within the NYU Langone Health System. For 
brevity, we refer to Tisch Hospital in Manhattan as ‘Manhattan’, NYU 
Langone Hospital–Brooklyn as ‘Brooklyn’ and all four hospitals within 
the NYU Langone Health System (Manhattan, Brooklyn, NYU Langone 
Orthopedic Hospital and NYU Langone Hospital–Long Island) as ‘all 
sites’. We considered three LLMs pretrained on different sites: the first 
one was pretrained in Manhattan, the second one was pretrained in 
Brooklyn and the third one was pretrained on all sites. For each of the 
pretrained LLMs, we fine-tuned the LLM with a readmission dataset 
from either Manhattan or Brooklyn. Finally, we asked the fine-tuned 
LLM to predict readmission on the basis of discharge notes from either 
Manhattan or Brooklyn. Figure 3c,d shows that the LLM pretrained on 
all sites had the best performance on both ‘test Manhattan’ and ‘test 
Brooklyn’. For all the LLMs, fine-tuning with the local dataset (‘fine-tune 
Manhattan/Brooklyn’) led to a higher test AUC at the test site (‘test 
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examples have high variance (at 100 examples, we had 4.26% to 9.56% variance; 
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Manhattan/Brooklyn’) compared with fine-tuning at another site 
(‘fine-tune Brooklyn/Manhattan’). Therefore, pretraining with data 
from all sites and local fine-tuning is the best way to optimize perfor-
mance. We performed additional analyses that showed that NYUTron is 
able to generalize to a different health system through local fine-tuning 
(Supplementary Information section 4.1 and Extended Data Fig. 4) and 
compared the robustness of NYUTron and lace+xgb with respect to 
training sites (Supplementary Information section 4.2). We also found 
that NYUTron is sensitive to notes from different clinical departments 
and patients with different demographics and that its performance 
fluctuates over months (Extended Data Figs. 5 and 6). The causes of 
the discrepancies can be very complex (discussed in Supplementary 
Information section 4.3) and will be studied in future work.

Prospective study of readmission
To assess NYUTron’s performance outside the development environ-
ment, we selected a model on the basis of the retrospective trial results 
and ran a prospective trial from January to April 2022. During this time 
period, we deployed NYUTron in an accelerated format and loaded it 
into an inference engine, which interfaces with the EHR, to read dis-
charge notes as they were signed by treating physicians. In this period, 
there were 29,286 discharged encounters, with 3,271 patients (11.17%) 
returning within 30 days. NYUTron predicted 2,692 of the 3,271 read-
missions (82.30% recall) with 20.58% precision. Figure 4a shows that 
NYUTron had an AUC of 78.70%.

To gauge the potential clinical impact, a group of six physicians per-
formed a qualitative evaluation of 100 randomly sampled readmitted 
cases that were captured by NYUTron following the trial’s conclusion. 
Physician review suggested that some true positive predictions by 
NYUTron are clinically meaningful, preventable readmissions. Overall, 
readmitted patients who were predicted to be readmitted were 6.02 
times more likely to die in hospital and stay 2.93 days longer (P < 10−4). 
As shown in Fig. 4b, 61% of the predicted case were unplanned, and 
the mean predicted probabilities for these unplanned readmissions 
were lower than those for planned readmissions (31.9% ± 31.1% versus 
82.1% ± 27.3%; P < 10−4). Among the unplanned readmissions, 19.67% 
of patients experienced an adverse event or death on readmission, 
with 50% of these events considered preventable by the physician 
panel. From a financial standpoint, 81.9% of the unplanned readmis-
sions would be penalized according to Centers for Medicare and 
Medicaid Services (CMS) guidelines. Among the penalizable cases, 
54% were considered preventable. Notably, 3 of the 27 preventable 
readmissions had Clostridioides difficile enterocolitis, a contagious, 
healthcare-associated bacterial infection that causes 1 in 11 people 
over age 65 to die within 1 month21.

Discussion
We present our work in developing, training, validating and deploying 
NYUTron, a health system-scale LLM designed and validated for clinical 
use. We demonstrate NYUTron’s performance on three clinical tasks 
(in-patient mortality prediction, comorbidity index prediction and 
readmission prediction) and two operational tasks (insurance claim 
denial prediction and inpatient LOS prediction). We also performed 
a detailed analysis of readmission prediction owing to its clinical and 
operational importance and its well-documented history in the medical 
informatics literature. We view the flexibility of our approach in using 
an encoder architecture (BERT), which relies on only unstructured text 
inputs to generate a single prediction, as being a virtue, and we antici-
pate many future tasks built on this fundamental paradigm to assist with 
multiple aspects of patient care and automating hospital operations.

An ethical consideration in deployment is that physicians and admin-
istrators could over-rely on NYUTron’s predictions owing to its seam-
less integration with existing medical workflows, thereby leading to 

undesirable outcomes. Further research is needed to optimize human–
AI interactions, as well as development of standardized assessments 
for sources of bias or other unexpected failure points. Ongoing work 
from our group around measuring the similarity between language 
models’ sensitivity patterns and those of physicians through token-level 
perturbations of the clinical notes22 is one among many such efforts.

Large, generative LLMs also present a unique opportunity for inte-
gration into medical workflows; however, they are highly depend-
ent on user inputs and prompting23 and are not as easily adapted 
for automation of basic clinical and operational tasks. The seamless 
integration into existing medical informatics workflows is a virtue of 
our approach, and we hope that this work presents itself as a flexible 
solution to the last-mile problem—any structured data algorithm can 
be reconceptualized and rapidly prototyped within this framework. As 
part of monitoring the impact of such a system on physician behaviour 
and on patients, there should be a level of continuous supervision to 
capture human–machine interactions, as well as mitigate the risk of 
model drift over time. We discuss our implementation of such a system 
in Supplementary Information section 5.

Our approach of using a smaller (<1 billion parameters) encoder lan-
guage model trained on highly tailored data represents a marked depar-
ture from the current trend in language model research that focuses 
on massive (>1 billion parameters), generative models pretrained on 
large, non-specific datasets. Nonetheless, even relatively small LLMs, 
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Fig. 4 | Prospective study of NYUTron’s predictive performance. a, NYUTron 
had an AUC of 78.70% in a prospective, single-arm, non-interventional trial  
with recall of 82.3% and precision of 20.6%. b, A panel of six physicians reviewed 
NYUTron’s results for potential clinical impact. Of 100 readmissions that  
were successfully identified by NYUTron, 61% were unplanned readmissions, 
50% would have resulted in a penalty under CMS guidelines and 27% were 
preventable at the time of discharge according to the consensus opinion of the 
multi-specialty panel of physicians who reviewed cases from the prospective 
trial. See Supplementary Information section 2.1 for a discussion of the 
readmission label and the practical significance of the observed performance.
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such as the ones used in this study, require a substantial amount of 
compute time for pretraining. Our pretraining used 24 NVIDIA A100 
GPUs with 40 GB of VRAM for 3 weeks, and our fine-tuning used 8 A100 
GPUs for 6 hours per run. This amount of computation is not commonly 
accessible to research groups, although we note that it is less than 
that in similar LLM projects routinely pursued by industry research 
groups and that our results indicate that massive pretraining may not 
be necessary to obtain highly performant models. Our results show 
that high-quality datasets for fine-tuning are more valuable than pre-
training, and, on the basis of our experimental results, we recommend 
that users locally fine-tune an externally pretrained language model 
when computational ability is limited. Regarding the choice for the 
externally pretrained model, we further recommend using a model 
pretrained with a large amount of in-domain clinical text, although we 
note that large, out-of-domain models can be highly performant, par-
ticularly when combined with in-domain fine-tuning. Work with larger 
decoder-based architectures has also demonstrated a benefit with 
fine-tuning on medical data or prompt tuning with chain of thought, 
instructions and related techniques24,25, which further emphasizes the 
necessity of accounting for the domain shift from general to medical 
text for LLM work in the medical sciences. Although we have not com-
pared these approaches directly (which would require more medical 
text or fusion with general-domain text for training a compute-optimal 
model26), we believe that this could be an interesting future direction 
for research and that, in the end, approaches combining these different 
approaches to language modelling may prove to be complementary 
depending on the use case.

The ultimate validation of our approach must come from randomized 
controlled trials of interventions tied to individual task predictions to 
assess their clinical impact and from user feedback as we continue to 
integrate NYUTron into health systems. As we plan this within our own 
health system, we recommend the consideration of different levels of 
intervention depending on the predicted risk of patients for each task. 
For instance, for a patient at low risk for 30-day readmission, follow-up 
calls could be scheduled; for a high-risk patient, care should be taken 
to limit premature discharge. All interventions should be decided on 
with physician supervision, although many of the operational uses can 
probably be fully automated.

It is a long-standing dream for physicians to have AI assistants observ-
ing care along with them and chiming in with predictions and advice. To 
take a step towards this futuristic vision, we trained an LLM, NYUTron, 
on the entire EHR of a large healthcare system to read physician notes 
and make several of these predictions across a wide range of clinical and 
operational tasks. We deployed NYUTron in a live healthcare environ-
ment and demonstrate its efficacy at predicting 30-day readmission 
while being integrated seamlessly into clinical workflows. We believe 
that this work opens the door to translating the progress in modern 
natural language processing and deep learning to improving the quality 
and affordability of healthcare, and we are excited to see what comes 
next.
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Methods

Pretraining datasets
NYU Notes. We created this dataset of unlabelled clinical notes directly 
from the NYU Langone EHR. The dataset contains 387,144 patients, 
7,247,694 notes and 4,112,249,482 words in total. We built NYU Notes as 
follows: we wrote structured query language (SQL) scripts to query the 
NYU Langone EHR. We first prototyped the queries with an interactive 
web-based editor (Cloudera Hue) and then download the query results 
as comma-separated files (CSVs) to NYU Langone’s high-performance 
computing cluster. We included notes signed by medical profession-
als (physicians, residents, physician assistants, nurse practitioners 
and fellows) at Tisch Hospital, NYU Langone Hospital–Brooklyn, NYU 
Langone Hospital–Long Island and NYU Langone Orthopedic Hospital 
from 2011 to 2020 (inclusive). We excluded any notes that were derived 
from billing, labelled as invalid or empty. We split the notes into three 
sets, training, validation and test sets, with a ratio of 949:50:1. Lastly, we 
masked tokens with 15% probability to create masked text and labels.

NYU Notes–Manhattan. We created this dataset of unlabelled clinical 
notes as the subset of NYU Notes that were written in Tisch Hospital 
in Manhattan. The dataset contains 256,217 patients, 4,342,602 notes 
and 2,381,466,993 words in total.

NYU Notes–Brooklyn. We created this dataset of unlabelled clinical 
notes as the subset of NYU Notes that were written in NYU Langone 
Health–Brooklyn. The dataset contains 104,521 patients, 1,337,352 
notes and 1,102,078,012 words in total.

Fine-tuning datasets
NYU Readmission. We created this dataset of labelled discharge notes 
(with binary labels for readmission) from the NYU Langone EHR. Most 
of the notes from this dataset are a subset of NYU Notes, with additional 
discharge notes from 2021 for the temporal test. The dataset contains 
413,845 patients, 506,740 notes and 487,395,462 words in total. We 
built this dataset as follows: for each encounter that ended between 
January 2011 and November 2021, we included its discharge note 
with a binary label for 30-day all-cause readmission. We assigned the  
‘readmitted’ label if the patient had an admission note within 30 days 
of being discharged. To focus on modelling acute care readmission, we 
excluded discharge notes from the rehabilitation, dialysis and palliative 
care departments because these were not acute care admissions. We 
split the dataset into four sets: training, validation, test and temporal 
test sets. The first three sets were notes from January 2011 to May 2021, 
with a ratio of 8:1:1. The temporal test set included notes from June to 
December 2021. See Extended Data Fig. 8a for a visualization of the 
four-way split.

NYU Readmission–Manhattan. We created this dataset of unlabelled 
clinical notes as the subset of notes in the NYU Readmission dataset 
that were written in Tisch Hospital in Manhattan. The dataset contains 
240,824 patients, 296,519 notes and 253,622,053 words.

NYU Readmission–Brooklyn. We created this dataset of unlabelled 
clinical notes as the subset of clinical notes from the NYU Readmis-
sion dataset that were written in NYU Langone Health–Brooklyn. The 
dataset contains 94,653 patients, 113,275 notes and 142,767,957 words.

NYU Mortality. We created this dataset of history and physical (H&P) 
notes with binary labels for in-hospital mortality from the NYU Langone 
EHR. Most of the notes from this dataset are a subset of NYU Notes, 
with additional H&P notes from 2021 for the temporal test. The data-
set contains 371,922 patients, 469,162 notes and 484,467,141 words in 
total. We built this dataset as follows: for each encounter that ended 
between January 2011 and November 2021, we included its H&P note 

with a binary label for in-hospital mortality. We assigned the positive 
label if the patient’s discharge disposition was ‘expired’. We split the 
dataset into four sets: training, validation, test and temporal test sets. 
The first three sets were notes from January 2011 to May 2021, with a 
ratio of 8:1:1, and the temporal test set included notes from June to 
December 2021.

NYU Binned Comorbidity. We created this dataset of H&P notes with 
five class labels for hospital LOS from the NYU Langone EHR. Most 
of the notes from this dataset were a subset of NYU Notes, with addi-
tional H&P notes from 2021 for the temporal test. The dataset contains 
327,039 patients, 403,579 notes and 422,485,417 words in total. The 
dataset contains fewer labelled encounters than the NYU Mortality 
and NYU Binned LOS datasets because 22% of the encounters had no 
International Classification of Diseases (ICD) codes to calculate the 
CCI score. This missingness motivated our task of predicting binned 
CCI score with a lack of structured ICD codes. We built this dataset 
as follows: for each encounter that ended between January 2011 
and November 2021, we included its H&P note with a five-class label 
for binned CCI score. To generate the labels, we first calculated the  
comorbidity index using the ICD codes and the scoring function in ref. 27.  
We then discretized the scores into five classes: we assigned label 0 for a 
comorbidity index below the 50% quantile (0 days), label 1 for a comor-
bidity index between the 50% and 75% quantile (1–2 days), label 2 for a 
comorbidity index between the 75% and 90% quantile (3–4 days), label 
3 for a comorbidity index between the 90% and 99% quantile (4–7 days)  
and label 4 for a comorbidity index above the 99% quantile (>7 days). We 
split the dataset into four sets: training, validation, test and temporal 
test sets. The first three sets were notes from January 2011 to May 2021, 
with a ratio of 8:1:1, and the temporal test set included notes from June 
to December 2021.

NYU Binned LOS. We created this dataset of H&P notes with quantile 
labels for hospital LOS from the NYU Langone EHR. Most of the notes 
from this dataset were a subset of NYU Notes, with additional H&P 
notes from 2021 for the temporal test. The dataset contains 371,922 
patients, 469,162 notes and 484,467,141 words in total. We built this 
dataset as follows: for each encounter that ended between January 2011 
and November 2021, we included its H&P note with a binary label and a 
quantile label for LOS. For the quantile label, we assigned label 0 for an 
LOS below the 25% quantile (0–2 days), label 1 for an LOS between the 
25% and 50% quantile (3 days), label 2 for an LOS between the 50% and 
75% quantile (4–5 days) and label 3 for an LOS above the 75% quantile (>5 
days). We split the dataset into four sets: training, validation, test and 
temporal test sets. The first three sets were notes from January 2011 to 
May 2021, with a ratio of 8:1:1, and the temporal test set included notes 
from June to December 2021.

NYU Insurance Denial. We created this dataset of H&P notes with 
binary labels for whether the patient’s insurance claim was initially 
rejected or directly approved. The dataset contains 54,563 patients, 
55,791 notes and 51,270,256 words in total. We built this dataset as fol-
lows: for each encounter that occurred between May 1, 2021, and April 
30, 2022, we included its H&P note with a binary label for insurance  
denial. We assigned a positive label if the patient’s insurance claim 
status was ‘final, adverse determination’ (claim was rejected by insur-
ance and was again rejected following appeal) or ‘final, favorable de-
termination’ (claim was rejected by insurance and approved following 
appeal). We split the dataset into four sets: training, validation, test and 
temporal test sets. The first three sets were notes from May 1, 2021, to 
February 30, 2022, with a ratio of 18:1:1. The temporal test set included 
notes from March 1 to April 30, 2022.

NYU Insurance Denial–Discharge Notes. We created this dataset of 
discharge notes with binary labels for whether the patient’s insurance 
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claim was initially rejected or directly approved. The dataset contains 
54,563 patients, 55,791 notes and 49,405,133 words in total. We built this 
dataset as follows: for each encounter that occurred between May 1, 
2021, and April 30, 2022, we included its discharge note with a binary 
label for insurance denial. The label assignment and four-way split were 
the same as in the NYU Insurance Denial dataset.

NYU Insurance Eventual Denial, H&P. This dataset contained the 
same notes as the NYU Insurance Denial dataset, but the labels were 
different. The binary label indicated whether the patient’s insurance 
claim was eventually rejected (even after appeal) or was eventually 
approved (direct approval or approval after appeal).

NYU Insurance Eventual Denial–Discharge. This dataset contained 
the same notes as the NYU Insurance Denial–Discharge Notes dataset, 
but the labels were different. The binary label indicated whether the 
patient’s insurance claim was eventually rejected (even after appeal) 
or was eventually approved (direct approval or approval after appeal).

i2b2-2012 NER. This is an open dataset released by the Harvard Medi-
cal School as part of an annual clinical NLP challenge28. This dataset is 
a well-known benchmark in the clinical NLP community. The task is to 
identify and classify clinical concepts (for example, treatments), clinical 
departments (for example, surgery), occurrences of events (for exam-
ple, admission) and evidentials (for example, the patient complained) 
from de-identified clinical notes from Beth Israel Medical Center in 
Boston. The dataset contains no more than 310 patients, 310 notes and 
636,000 words. We downloaded the dataset as a compressed tar.gz 
file from the n2c2 data portal after our use application was approved.

MIMIC-III Readmission. This is an open dataset for an intensive care 
unit (ICU) EHR released by MIT and Boston Beth Israel Medical Center29.  
We collected a set of 52,726 discharge notes and created a 30-day 
all-cause readmission label by checking whether there was any subse-
quent encounter within 30 days. The readmission rate was 6%. We split 
the data into training, validation and test sets in a 8:1:1 ratio.

Deployment dataset
NYU Readmission–Deployment. This dataset consists of discharge 
notes with binary labels for readmission from our deployment engine 
and the NYU Langone EHR. From January to April 2022, every time a dis-
charge note was signed by a physician, the note was sent to our custom 
inference engine for NYUTron’s prediction. The paired discharge note 
and prediction were recorded in a database. The database contained 
27,376 patients, 29,287 notes and 34,669,963 words by the end of the 
study period.

Structured datasets
NYU Readmission–LACE. We created this dataset of structured LACE30 
features with binary labels for readmission for comparison against the 
unstructured models. The dataset contains structured features for 
all encounters in the NYU readmission dataset. LACE is a traditional 
clinical prediction rule for readmission with four features: LOS, acuity 
of readmission, Charlson comorbidity index, and number of recent 
emergency department visits in the past 6 months. We built the dataset 
as follows: for every encounter in the NYU Readmission dataset, we 
collected data on the four LACE features from the NYU Langone EHR. 
LOS was the difference (in days) between the discharge date and the 
admission date. Acuity of readmission was a binary feature indicating 
whether the patient was admitted to the emergency department. The 
comorbidity index was calculated with the ICD-9 or ICD-10 codes for 
chronic diseases, on the basis of the mapping algorithm in ref. 31 and the 
scoring function in ref. 27. The number of emergency department visits 
was calculated from the patient’s encounter history up to 6 months 
before the admission date.

NYU Readmission–LACE, Manhattan. We created this dataset of struc-
tured LACE features from the subset of notes from the NYU Readmis-
sion–LACE dataset that were written in Tisch Hospital in Manhattan.

NYU Readmission–LACE, Brooklyn. We created this dataset of struc-
tured LACE features from the subset of notes from the NYU Readmis-
sion–LACE dataset that were written in NYU Langone Health–Brooklyn.

NYU Mortality–SAPS2 + APACHE2. We created this dataset of struc-
tured SAPS2 + APACHE2 features with binary labels for in-hospital mor-
tality to compare against the unstructured data. The dataset contains a 
subset of structured SAPS2 + APACHE2 features for all encounters in the 
NYU Mortality dataset. SAPS2 + APACHE2 features are a subset of the 
features used in the SAPS2 model15 and the APACHE2 model16 for ICU 
mortality prediction. We selected the subset of features that were avail-
able in the NYU Langone EHR. We included the following 12 features: 
age (numerical), mean heart rate (numerical), systolic blood pressure 
(numerical), atrial temperature (numerical), blood urea nitrogen con-
centration (numerical), sodium concentration (numerical), potassium 
concentration (numerical), bilirubin concentration (numerical), white 
blood cell count (numerical), pH (numerical), creatine concentration 
(numerical) and haematocrit (numerical). We additionally included 
department specialty (categorical). We excluded the following features 
owing to their unavailability: PaO2/FiO2 (ratio of arterial oxygen partial 
pressure to fractional inspired oxygen), whether the patient was on 
mechanical ventilation or continuous positive airway pressure (CPAP), 
bicarbonate concentration, urine output, Glasgow Coma Scale score, 
presence of metastatic cancer or haematological malignancy or AIDS, 
and whether the admission was scheduled.

NYU Binned LOS–Lisbon Portugal. We created this dataset of struc-
tured ‘Lisbon Portugal’ features with binary labels for in-hospital mor-
tality to compare against the unstructured data model. The dataset 
contains a subset of the features used in the Lisbon Portugal dataset18 
(which is widely used in the LOS prediction literature) for all encounters 
in the NYU Binned LOS dataset. We selected a subset of 12 features that 
were available in the NYU Langone EHR: gender (categorical), age as 
measured by the difference in years between the birth date and the 
admission date (numerical), highest level of education (categorical), 
country (categorical), postal code as address (categorical), marital 
status (categorical), admission type (categorical), admission service 
type (categorical), provider ID (categorical), department specialty 
(categorical), procedure name (categorical) and number of previous 
admissions (numerical). We left out diagnosis because it is not always 
available at the time of writing H&P notes. We excluded the following 
three features owing to difficulty in finding them in the NYU Langone 
EHR: homogeneous group diagnosis code, great diagnostic category 
and treatment.

NYU Insurance Denial–Claim Forms. We created this structured 
dataset based on the NYU Insurance Denial dataset for comparison 
against the unstructured data model. The dataset contains structured 
features for all encounters in the NYU Insurance Denial dataset and 
has the same splits as the NYU Insurance Denial dataset. Selection of 
structured features was based on the features in ref. 19, which built a 
model that predicts insurance claim denial from demographic and 
care-related features found in the claim form. We found eight avail-
able features in the NYU Langone EHR: patient name (categorical), age 
(numerical), gender (categorical), postal code as a generalization of 
address (categorical), insurance brand (categorical), first insurance 
plan name (categorical), provider ID (categorical) and provider type 
(categorical). We additionally added four features based on the clini-
cian’s inputs: second insurance plan code (categorical), a binary flag for 
surgical cases (categorical), a binary flag for emergency department 
cases (categorical) and a binary flag for Medicare fee-for-service users 



(categorical). We left out six features in ref. 19 owing to difficulty in 
searching for them: the patient’s relationship to the insured person, 
network type, whether the claim was a resubmission, diagnosis pointer, 
charge of service and prior authorization number.

Preprocessing
Pretraining datasets (NYU Notes, NYU Notes–Manhattan, NYU 
Notes–Brooklyn). Using these datasets, we trained an uncased BERT 
wordpiece tokenizer with a vocabulary size of 50,000 tokens, a maxi-
mum sequence length of 512 tokens and special tokens [SEP], [PAD], 
[UNK], [MASK] and [CLS]. Because most of the clinical notes had more 
than 512 tokens, we split each long note into non-overlapping chunks 
that were under the maximum sequence length. Specifically, we split 
each note into sentences using natural language toolkit (nltk)32 and  
tokenized each sentence. For sentences that were longer than 512 to-
kens, we truncated them. Next, for all tokenized sentences in the same 
note, we concatenated them into groups such that each group had 
exactly the maximum sequence length. We discarded any remaining 
group (with a length strictly less than the maximum) of a long note.

Fine-tuning datasets (NYU Readmission, NYU Readmission– 
Manhattan, NYU Readmission–Brooklyn, NYU Mortality, NYU  
Binned LOS, NYU Insurance Denial, NYU Binned Comorbidity). Using 
the tokenizer trained with NYU Notes, we first tokenized the discharge 
note. We truncated notes that exceeded the maximum sequence length 
of 512 tokens. We leave it for the future to design a language model that 
efficiently reads longer clinical notes (see Extended Data Fig. 8b for the 
impact of note length on language model performance).

i2b2-2012 NER. We first decompressed the tar.gz files into folders 
of xml files. We then converted the xml files to brat format. Next, we 
converted the brat files to bio files. Finally, we wrote a custom Hugging-
Face33 data loader to convert the folder of bio files into a HuggingFace 
dataset. Our code for preprocessing is available at GitHub.

Deployment datasets. We first cleaned the notes by stripping out 
html artifacts. We then tokenized the discharge note using NYUTron’s 
tokenizer. We truncated notes that exceeded the maximum sequence 
length of 512 tokens.

Structured dataset (NYU Readmission–LACE, NYU Mortality– 
SAPS2 + APACHE2, NYU Binned LOS–Lisbon Portugal, NYU Insurance  
Denial–Claim Forms). When there was a missing numerical feature 
(for example, the average heart rate was NaN), we filled in the feature 
as the average feature across the training set. For missing categorical 
features (for example, the admitting department was ‘unspecified’), 
we left them as category ‘none’.

Pretraining
We pretrained a 109 million-parameter BERT model using preproc-
essed NYU Notes and the MLM objective for 3 weeks (96 epochs) on 
24 NVIDIA A100 GPUs distributed over three compute nodes until the 
validation loss started to plateau. The model has 12 hidden layers with 
dimension 768, with 12 attention heads per layer. We used a per-device 
training batch size of 64 and saved every 2,000 steps. We used the Zero 
Redundancy AdamW optimizer (an improvement over the Adam opti-
mizer) with a constant learning rate of 5 × 10−5, FP16 mixed precision 
and stage 2 parallelization34–36.

Fine-tuning
NYUTron + discharge notes for readmission prediction. We replaced 
the trained MLM classifier with a randomly initialized linear classifier 
after the last hidden layer of the pretrained BERT model. We fine-tuned 
the model end to end using the training set of the NYU Readmission 
dataset for ten epochs, evaluating the validation AUC every half epoch 

and stopping early with a patience of five. We used the following hyper-
parameters from manual tuning based on the validation AUC: a learning 
rate of 2 × 10−5, a weight decay of 0.01 and a per-device batch size of 4. 
We optimized the cross-entropy loss using the AdamW optimizer. While 
varying the size of the dataset (N ∈ {102, 103, 104, 105, 3.92336 × 105}), we 
fine-tuned the pretrained model using subsamples of the NYU Read-
mission dataset and evaluated their AUC on the temporal test set. For 
each size of subsample, we ran five experiments with distinct random 
seeds (0, 13, 24, 36, 42). For comparison, we looked at the median AUC 
and the standard deviation of the five experiments.

NYUTron + H&P notes for in-hospital mortality prediction. We  
replaced the trained MLM classifier with a randomly initialized linear 
classifier after the last hidden layer of the pretrained BERT model. 
We fine-tuned the model end to end using the training set of the NYU 
Mortality dataset for ten epochs, evaluating the validation AUC every 
half epoch and stopping early with a patience of 5. We used the fol-
lowing hyperparameters from manual tuning based on the validation 
AUC: a learning rate of 2 × 10−5, a weight decay of 0.01 and a per-device 
batch size of 4. We optimized the cross-entropy loss using the AdamW 
optimizer. Using the full dataset, we fine-tuned the pretrained model 
using subsamples of the NYU Mortality dataset and evaluated their 
AUC on the temporal test set. For each size of subsample, we ran five 
experiments with distinct random seeds (0, 13, 24, 36, 42). For com-
parison, we looked at the median AUC and the standard deviation of 
the five experiments.

NYUTron + H&P notes for binned comorbidity prediction. We  
replaced the trained MLM classifier with a randomly initialized linear 
classifier after the last hidden layer of the pretrained BERT model. 
We fine-tuned the model end to end using the training set of the NYU 
Binned Comorbidity dataset for ten epochs, evaluating the validation 
OVR AUC every half epoch and stopping early with a patience of 5. We 
used the following hyperparameters from manual tuning based on the 
validation OVR AUC: a learning rate of 2 × 10−5, a weight decay of 0.01 
and a per-device batch size of 4. We optimized the cross-entropy loss 
using the AdamW optimizer. Using the full dataset, we fine-tuned the 
pretrained model with subsamples of the NYU Binned Comorbidity 
dataset and evaluated their OVR AUC on the temporal test set. For each 
size of subsample, we ran five experiments with distinct random seeds 
(0, 13, 24, 36, 42). For comparison, we looked at the median OVR AUC 
and the standard deviation of the five experiments.

NYUTron + H&P notes for binned LOS prediction. We replaced the 
trained MLM classifier with a randomly initialized linear classifier after 
the last hidden layer of the pretrained BERT model. We fine-tuned the 
model end to end using the training set of the NYU Binned LOS dataset 
for ten epochs, evaluating the validation AUC every half epoch and 
stopping early with a patience of 5. We used the following hyperparam-
eters from manual tuning based on the validation OVR AUC: a learning 
rate of 2 × 10−5, a weight decay of 0.01 and a per-device batch size of 4.  
We optimized the cross-entropy loss using the AdamW optimizer. Us-
ing the full dataset, we fine-tuned the pretrained model with subsam-
ples of the NYU Binned LOS dataset and evaluated their AUC on the 
temporal test set. For each size of subsample, we ran five experiments 
with distinct random seeds (0, 13, 24, 36, 42). For inference, we com-
bined the last two classes, label 3 (90–99% quantile) and label 4 (>99%  
quantile) because label 4 was very sparse. For comparison, we 
looked at the median OVR AUC and the standard deviation of the five  
experiments.

NYUTron + H&P notes for insurance denial prediction. We replaced 
the trained MLM classifier with a randomly initialized linear classifier 
after the last hidden layer of the pretrained BERT model. We fine-tuned 
the model end to end using the training set of the NYU Insurance 
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Denial dataset for ten epochs, evaluating the validation AUC every half  
epoch and stopping early with a patience of 5. We used the follow-
ing hyperparameters from manual tuning based on the validation 
AUC: a learning rate of 2 × 10−5, a weight decay of 0.01 and a per-device 
batch size of 4. We optimized the cross-entropy loss using the AdamW  
optimizer. Using the full dataset, we fine-tuned the pretrained model 
using subsamples of the NYU Insurance Denial dataset and evaluated 
their AUC on the temporal test set. For each size of subsample, we ran 
five experiments with distinct random seeds (0, 13, 24, 36, 42). For 
comparison, we looked at the median AUC and the standard deviation 
of the five experiments.

NYUTron + clinical notes for NER. We performed the fine-tuning 
experiments as follows. For each LLM in Extended Data Table 2, we 
initialized a HuggingFace token classification model with the LLM as 
the pretrained checkpoint. We fine-tuned the model using i2b2-2012 
NER for ten epochs using the AdamW optimizer with a learning rate of 
2 × 10−5, a weight decay of 0.01 and a batch size of 4, evaluating every 
50 steps and stopping early on the basis of area under the receiver 
operating characteristic (AUROC) with a patience of 1. This took 20 to 
40 min on one node of four NVIDIA 17-GB V100 GPUs. We performed 
fine-tuning five times with random seeds 0, 13, 24, 36 and 42 and  
recorded the average and standard deviation of the micro-averaged F1 
score (excluding the label for non-entity, ‘O’).

NYUTron + MIMIC-III readmission. We performed the fine-tuning 
experiments as follows: For both NYUTron and BioClinicalBert, we 
initialized a HuggingFace token classification model with the LLM as 
the pretrained checkpoint. We fine-tuned the model using MIMIC-III 
Readmission for ten epoch using the AdamW optimizer with a learning 
rate of 2 × 10−5, a weight decay of 0.01 and a batch size of 16, evaluating 
every half epoch. We performed fine-tuning five times with random 
seeds 0, 13, 24, 36 and 42.

Deployment
The fine-tuned model was converted to a high-performance format 
(Onnx or TensorRT) and loaded into our deployment platform, an 
NVIDIA Triton inference engine that interfaces with the NYU Langone 
EHR through the HLA7 Fast Health Interoperability Resources (FHIR)37 
interface. For our consideration of performance, security, reliability 
and interpretability, see Supplementary Information section 5.

Our deployment platform consisted of a modified version of NVIDIA’s 
Triton Inference Server that we named NYUTriton (pronounced ‘nutri-
tion’ because it is good for the health system). NVIDIA Triton supports 
GPU-, x86- and ARM CPU-based inferencing and several key features, 
including dynamic batching, concurrent execution, a highly flexible 
model specification interface, and the ability to support a wide range 
of deep learning frameworks and accelerated model formats for maxi-
mum throughput. We modified NVIDIA Triton to interface seamlessly 
with HuggingFace-formatted language models so as to provide a uni-
form and highly flexible crossover point between our development 
and production pipelines. Trained models were saved in a standard 
HuggingFace-style format and converted into Onnx and then TensorRT 
to obtain sub-millisecond-scale inference results. NYUTriton is hosted 
on a dedicated inference server that consists of an AMD Threadripper 
3960X (24 cores, 3.8 GHz), two RTX 3090 GPUs and 128 GB of DDR5 
system memory purchased from Lambda Labs.

Following the signing of discharge summaries in Epic, the HL7 FHIR 
interface connects with NYUTriton and sends a JavaScript Object Nota-
tion ( JSON) payload consisting of the discharge summary and metadata 
specifying the underlying readmission model and sender. NYUTri-
ton preprocesses the text, runs an inference job with the accelerated 
NYUTron readmission model and returns the model’s inference result to 
a secondary orchestration server, which writes the result to a database 
and generates an email to the signing physician.

Structured baselines
The structured baselines were (1) SAPS2/APACHE2 features + XGBoost 
for in-hospital mortality prediction, (2) LACE features + XGBoost for 
readmission prediction, (3) Lisbon Portugal features + XGBoost for 
binned LOS prediction and (4) claim form features + XGBoost for insur-
ance denial prediction.

For all structured baselines, we used the xgboost library to train an 
extreme gradient-boosted tree classifier with a binary logistic loss (mul-
ticlass softmax loss for more than two classes). We used scikit-learn’s 
randomized search to search hyperparameters among minimum_child_
weight from {1, 5, 10}, gamma from {0.5, 1, 1.5, 2, 5}, subsample from {0.6, 
0.8, 1}, col_sample_bytree from {0.6, 0.8, 1.0}, max_depth from {3, 4, 5}, 
learning_rates from {0.001, 0.01, 0.1, 0.5} and n_estimators from {10, 
100, 1000} for 100 iterations based on AUROC score (ovr-auroc score 
for multiple classes) from threefold cross-validation38. We ran each 
experiment five times with distinct random seeds (0, 13, 24, 36, 42). For 
mortality, binned comorbidity, binned LOS and insurance denial, we 
ran the experiment with the full dataset. For readmission, we trained 
the model using subsamples (N ∈ {102, 103, 104, 105, 3.92336 × 105}) of 
the NYU Readmission–LACE dataset.

Metrics
We evaluated the five tasks (in-hospital mortality prediction, binned 
comorbidity index prediction, 30-day all-cause readmission prediction, 
binned LOS prediction and insurance denial prediction) with AUC for 
binary classes and OVR AUROC for multiple classes. AUROC is the area 
under the two-dimensional curve consisting of tuples of the form (TPR, 
FPR) resulting from different decision thresholds.

We additionally evaluated readmission prediction with the following 
metrics: TPR, FPR, precision, recall and F1 score, all of which have a range 
of [0, 1]. We evaluated NER using a micro-averaged NER F1 score. The 
NER F1 score is similar to the normal F1 score except that the non-entity 
label ‘O’ is excluded for calculation.

Baseline algorithms for retrospective study
We compared NYUTron against physicians. We worked with six physi-
cians with different levels of seniority: three attending physicians and 
three residents. The physicians were asked to review discharge sum-
maries and predict whether the described patient would come back 
to the hospital within 30 days.

We compared NYUTron against four other LLMs and two machine 
learning models. ‘random-init’ is a BERT-base uncased model with 
randomly initialized parameters. ‘web-wiki’ is a BERT-base uncased 
model that is pretrained using web text (from the BookCorpus data-
set39) and Wikipedia articles (from the English Wikipedia dataset40). 
‘web-wiki+bio’ is a BERT model pretrained using web text, Wikipedia 
articles, PubMed abstracts41 and PubMed Central (PMC) full articles42. 
‘web-wiki+bio+clinical’, or gatortron-og43, is a Megatron-BERT44 model 
pretrained using web text, Wikipedia articles, PubMed abstracts, PMC 
full articles, MIMIC-III notes and de-identified clinical notes from Univer-
sity of Florida Health. ‘lace+xgb’ reads structured LACE features (from 
a traditional clinical prediction rule) with an extreme gradient-boosted 
tree model14. ‘tf-idf+xgb’ reads corpus-level bag-of-words features with 
an extreme gradient-boosted tree model. For detailed statistics and 
examples of the pretraining corpora, see Extended Data Table 2 and 
Extended Data Fig. 3.

Comparison with physicians
We randomly sampled 20 discharge notes from the random test set 
and asked six doctors with different seniority to predict whether the 
patient would come back within 30 days. The six physicians included 
three attending neurosurgeons, two neurosurgery residents and one 
ICU resident.

We used REDCap to perform the survey and gave physicians unlim-
ited time. The survey was structured as follows: for each case, we 



asked “Will this person be admitted within 30 days?”, followed by the 
discharge summary. The physician could choose to answer “yes” or 
“no”. If the patient came back within 30 days, we had three follow-up 
questions to assess the characteristics of the subsequent readmission. 
First, we asked “Is this readmission related to the prior discharge?”, fol-
lowed by the H&P note of the subsequent readmission. The physician 
could answer “yes”, “no”, “partial” or “does not meet Medicare criteria 
for 30-day readmission”. The second follow-up question was “Is this 
readmission preventable?”, to which the physician could answer “yes”, 
“no” or “partial”. The third follow-up question, “Any comments?”, had a 
free-text response where the physician could explain why the readmis-
sion was partially related to the prior discharge or why the readmission 
was partially preventable.

To collect NYUTron’s predictions, we used the text classification pipe-
line from HuggingFace to perform inference on the 20 discharge notes. 
For each discharge note, the pipeline output a predicted probability for 
readmission. We converted this predicted probability to a binary label 
with a threshold of 0.07 (a predicted probability no less than 0.07 was 
converted to a positive label). We chose 0.07 as the decision bound-
ary because it was the minimum threshold that gave us above 80% 
validation recall among the thresholds {0.01 × n : n ∈ {1, ..., 90} (the 
80% criterion was chosen on the basis of clinical applicability). See 
Extended Data Fig. 8c for NYUTron’s calibration curve.

Comparison with other language models
Discharge notes + other LLMs for readmission prediction. The 
dataset, hyperparameters, and evaluation and software libraries for 
fine-tuning other LLMs were the same as when fine-tuning NYUTron. 
The pretrained LLMs were constructed as follows: random-init is 
a BERT-base uncased model with reset parameters. web-wiki is a 
BERT-base uncased model. web-wiki+bio is a dmis-lab/biobert-base 
cased v1.2 model. web-wiki+bio+clinical was Gatortron-og downloaded 
from NVIDIA NGC and converted to a HuggingFace checkpoint using 
convert megatron bert checkpoint.

Clinical notes + other LLMs for NER. The dataset, hyperparameters, 
and evaluation and software libraries for fine-tuning other LLMs were 
the same as for fine-tuning NYUTron. The pretrained LLMs were the 
same as the baseline LLMs for predicting readmission from discharge 
notes.

Comparison with machine learning models
LACE features + XGBoost for readmission prediction. Using the NYU 
Readmission–LACE dataset, we used the xgboost library to train an 
extreme gradient-boosted tree classifier with binary logistic loss with 
hyperparameter search. We used scikit-learn’s randomized search to 
search among minimum_child_weight from {1, 5, 10}, gamma from {0.5, 
1, 1.5, 2, 5}, subsample from {0.6, 0.8, 1}, col_sample_bytree from {0.6, 
0.8, 1.0}, max_depth from {3, 4, 5}, learning_rates from {0.001, 0.01, 
0.1, 0.5} and n_estimators from {10, 100, 1000} for 100 iterations on 
the basis of AUROC score on the validation set37. We trained the model 
using subsamples (N ∈ {102, 103, 104, 105, 3.92336 × 105}) of the NYU 
Readmission–LACE dataset and evaluated their AUROC on the tempo-
ral test set. For each size of subsample, we ran five experiments with 
distinct random seeds (0, 13, 24, 36, 42). For comparison, we looked at 
the median AUROC and the standard deviation of the five experiments.

XGBoost + TF-IDF for readmission prediction. We transformed the text 
from the NYU Readmission dataset into tf-idf (term frequency–inverse  
document frequency) embeddings and used an xgboost classifier with 
binary logistic loss to predict readmission. We used raytune45 to search 
hyperparameters, including max_tf-idf features from {512, 5000}, max_
depth from a quantized random integer of 3 to 16 with an interval of 4, 
learning_rate from a log uniform distribution from 10−2 to 10−1, gamma 
from a quantized uniform distribution from 0 to 12 with an interval 

of 4, minimum_child_weight from a quantized uniform distribution 
from 0 to 8 with an interval of 4, reg lambda from a quantized uniform 
distribution from 0 to 10 with an interval of 2, colsample_bytree from 
a uniform distribution from 0.7 to 1, scale pos weight from a quantized 
uniform distribution from 0 to 50 with an interval of 10 and n_estimator 
from a quantized integer distribution from 50 to 300 with an interval 
of 50. We trained the model using subsamples (N ∈ {102, 103, 104, 105, 
3.92336 × 105}) of the NYU Readmission dataset and evaluated their 
AUROC on the temporal test set. For each size of subsample, we ran 
five experiments with distinct random seeds (0, 13, 24, 36, 42). For 
comparison, we looked at the median AUROC and the standard devia-
tion of the five experiments.

Comparison of multi-site pretraining and fine-tuning
We compared NYUTron with its four variants (pretrained and fine-tuned 
using data from different sites): (1) NYU Notes–Manhattan + NYU Read-
mission–Manhattan, (2) NYU Notes–Manhattan + NYU Readmission–
Brooklyn, (3) NYU Notes–Brooklyn + NYU Readmission–Brooklyn and 
(4) NYU Notes–Brooklyn + NYU Readmission–Manhattan. The hyperpa-
rameters and evaluation and software libraries for fine-tuning NYUTron 
variants were the same as for fine-tuning NYUTron.

Analysis of prospective performance
On the basis of the temporal test performance in the retrospective 
study, we selected a fine-tuned model with a decision threshold of 0.07 
for use in the prospective trial.
Comparison of mortality rate and LOS. To assess the condition of 
the readmitted patients who were correctly predicted (n = 3,298), we 
compared their in-hospital mortality rate and length of hospitaliza-
tion with that of patients who were admitted in the same period. We 
collected data on patients who were admitted from February to May 
2022 (n = 30,548) and compared their in-hospital mortality rate and 
LOS with that of the readmitted patients caught by NYUTron from 
January to April 2022. We used two-sided Welch’s t tests (with the null 
hypothesis that the two groups had the same average) to assess the 
statistical significance of our comparison46.

Assessing NYUTron’s clinical impacts with physician review. We 
performed a post hoc analysis of readmitted patients in the prospective 
cohort to better understand model performance in a real-world envi-
ronment and in anticipation of creating targeted interventions based 
on model outputs. One hundred readmitted patients were sampled 
from the five largest departments at NYU Langone by patient volume: 
internal medicine, pediatrics, general surgery, obstetrics and gynaecol-
ogy, and haematology and oncology. Each department contributed 20 
cases, with 10 cases having the highest predicted probabilities in that 
department and 10 cases having the lowest predicted probabilities. 
All cases had their encounter IDs logged for their index discharge and 
readmission on a secure online platform. A standardized questionnaire 
was constructed for manual review asking whether the readmission 
was planned, whether the readmission met CMS criteria for a penalized 
30-day readmission, whether the readmission was preventable, wheth-
er an adverse event occurred on readmission, whether any adverse 
events were preventable and whether the reviewing physicians had any 
comments on the case. A team of ten physicians from internal medicine 
and neurosurgery were randomly assigned cases to be reviewed in 
pairs, with any disagreement between the reviewers adjudicated by 
a third physician reviewer. To determine whether a readmission was 
preventable, the reviewer looked at the discharge note of the inference 
encounter and the H&P note of the readmission encounter.

Ethical approval
Our research was approved by the NYU Langone institutional review board 
as ‘s21-01189 NYUtron’, and the methods were carried out in accordance 
with the institutional review board’s relevant guidelines and regulations.
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Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
The clinical data used for the pretraining, fine-tuning, validation and 
test sets were collected from the NYU Langone Health System EHR 
maintained by the NYULH Datacore team. Text data were stripped of 
rich-text features and directly included in the dataset ‘as is’ and were 
augmented with structured features where noted. These data consist 
of the production medical records of NYU Langone and cannot be made 
publicly available. Researchers may obtain a limited de-identified data-
set (or a test subset) from NYU Langone Health System by reasonable 
request and subject to local and national ethical approvals. We also 
used publicly available i2b2-2012 (https://portal.dbmi.hms.harvard.
edu/projects/n2c2-nlp/) and MIMIC-III (https://physionet.org/content/
mimiciii/1.4/) datasets.

Code availability
We used sql and Python 3.8.13 to collect data from the NYU Langone 
EHR. We used REDCap 12.4.31 to collect physician responses. This work 
used several open-source libraries, including HuggingFace Transform-
ers 4.19.2, Datasets 2.2.2, Evaluate 0.1.1, wandb 0.12.17, matplotlib 
3.5.2, seaborn 0.12.2, pandas 1.4.2, ray 2.0.0, sklearn 1.1.1, deepspeed 
0.8.0+384f17b, NVIDIA Apex, XGBoost 1.6.1 and nltk 3.6.3. Our experi-
mental framework involved the use of these libraries and, in some cases, 
modification of them. We will release code to replicate the pretraining, 
fine-tuning and testing of the models described in this paper at the 
time of publication (code for experiments available at https://github.
com/nyuolab/NYUTron, preprocessing code for i2b2-2012 available 
at https://github.com/nyuolab/i2b2_2012_preprocessing). We include 
detailed methods and implementation steps in the Methods and Sup-
plementary Information to allow for independent replication.
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Extended Data Fig. 1 | Difference between random test and temporal test.  
a, AUC curve for the random test shows better performance than the temporal 
test. The random-test AUC is 84.13%, compared to the temporal-test AUC of 
80.2%. The difference highlights the importance of creating a test set to reflect 
the problem setup. In the case of readmission prediction, the deployment set 
always comes from the future of the training set. Thus we use the temporal test 
AUC for model selection. b, Comparison of random-test AUC and temporal-test 
AUC as the number of training examples increases shows that temporal-testing 
is important to estimate deployment performance. Here we show that 

sampling a temporally split out dataset seems “harder” than a randomly 
sampled test dataset because all tested LLMs and lace+xgb perform worse on 
the temporal test (notes from the future) than the random test (notes from the 
same time as the training data). The colored lines on the left (random test AUCs) 
are generally higher than the colored lines on the right (temporal test AUCs). 
We conclude that this is an important distinction that temporally sampled 
held-out test sets give a more realistic estimate of model performance. 
Interestingly, the language models seem to be more sensitive to this 
phenomenon than the lace+xgb model.
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Extended Data Fig. 2 | Benchmarking NYUTron against a traditional NLP 
model and other language models on a different clinical prediction task 
(clinical concept extraction). We observe a similar trend as readmission 
prediction: (a) shows that NYUTron has better performance than tf-idf under 
different data availability settings and (b) shows that clinically pretrained 
language models have better performance than non-clinically pretrained 
language models. This corroborates our findings that health-system scale 
language models are general purpose clinical prediction engines and that a 
domain match between pretraining and finetuning corpus contributes to task 
performance. a, Comparison of temporal test AUCs between NYUTron and a 
traditional NLP model (tf-idf+xgb). NYUTron has a higher median AUC than 
tf-idf+xgb for all tested number of finetuning examples. The black vertical line 
indicates standard deviation over 5 trials of different random seeds (0, 13, 24, 
36, 42). b, Comparison of LLMs’ finetuning performances on the NER task. On 
the i2b2-2012 clinical concept extraction task, the LLMs that are pretrained 
with clinical corpora (NYUTron, web-wiki+bio+clinical) have a higher average 
f1 score than LLMs that are not pretrained with clinical corpora (web-wiki+bio, 
web-wiki, random-init). Specifically, NYUTron and web-wiki+bio+clinical 
perform better than the randomly initialized model (36.64% higher median 
seqeval f1 score) and non-clinically pretrained models (2.01%–3.48% higher 
median seqeval f1 score). Note that the height of each bar is the average f1 score 
and the half length of each black vertical line indicates the standard deviation 
over 5 trials of different random seeds (0, 13, 24, 36, 42).



Extended Data Fig. 3 | Examples of pretraining corpora. We include here 
some examples from the utilized pretraining corpora to help contextualize our 
work. Examples from three types of pretrain corpus: (1) web-wiki (online books 
from bookcorpus and encyclopedia articles from English Wikipedia), (2) bio 
(abstracts of academic papers from Pubmed Abstracts and full articles from 
Pubmed Central), and (3) clinical (NYU Notes, NYU Readmission from Langone 
EHR and clinical notes from University of Florida Health).
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Extended Data Fig. 4 | Comparison of NYUTron’s and BioClinicalBERT’s 
performance on MIMIC-III Readmission. To test how much finetuning 
NYUTron needs to generalize to another health system, we finetune NYUTron 
and BioClinicalBERT (which has the same number of parameters and 
architecture as NYUTron, but pretrained on MIMIC notes, bookcorpus, 
pubmed and wikipedia articles) using different subsamples of MIMIC-III 
readmission dataset. The dataset contains 52,726 de-identified ICU discharge 
notes from Boston Beth Israel Hospital with 8:1:1 train-val-test split. At 100 
samples, the AUC is similar. At 1000 samples, NYUTron has a 3.58% higher 
median AUC than BioClinicalBERT (57.22% v.s. 53.64%). At 10,000 samples, 

NYUTron has a 6.42% higher median AUC than BioClinicalBERT (65.56% v.s. 
59.14%). Using the full dataset (42,180 samples), NYUTron has a 3.8% higher 
median AUC than BioClinicalBERT (67.04% v.s. 63.24%). Given that NYUTron 
was pretrained on identified all-department notes from NYU Langone and 
finetuned on de-identified ICU-specific notes from Beth-Israel, this result 
shows that NYUTron is able to generalize to a very different health environment 
through local finetuning. The height of the bar indicates the median 
performance of 5 experiments using distinct random seeds (0, 13, 24, 36, 42) 
and the error bar indicates the min-max range.



Extended Data Fig. 5 | Bias analysis stratifying NYUTron’s performance by 
clinical departments and months. a, A stratified analysis of NYUTron’s 
temporal test performance by clinical department and oncological 
subspecialty. NYUTron performs best in the Neurology Department (AUC 
90.12%), and performs worst in the Internal Medicine Department (AUC 67.95% 
for non-oncology specialty and AUC 63.77% for oncology specialty), with a 
difference of about 20% AUC. This significant variance across clinical 
departments suggests that a more fine-grained analysis may lead to 
performance benefits. We annotate the number of examples (N) and the 
readmission rate (p) for each department. b, NYUTron’s performance displays 
minor fluctuations over months. We plot the average monthly test AUC of 
NYUTron from January 2013 to December 2021 to look for underlying monthly 
trends or cycles and to test the hypothesis that performance would be worst in 

July when new physicians start their training with a different writing style than 
physicians already in practice (dashed red line indicating the monthly AUC of 
July). The height of the bar indicates average monthly performance across the  
9 years and the vertical bar indicates the standard deviation. We annotate the 
number of examples (N) and the readmission rate (p) for each month. We note 
that July has the second lowest monthly AUC and the highest variance. We 
speculate (and need more years of data to verify) that clinical notes written by 
new physicians are associated with the temporal shift across the months and 
the drop in performance in July. Average AUCs from the quarters January to 
March, April to June, and July to September are increasing, which may coincide 
with residents’ rotation schedule across different clinical departments. We 
leave further investigation of this cyclical performance to future work.



Article

Extended Data Fig. 6 | Bias analysis stratifying NYUTron’s performance by 
age groups and major racial groups. As part of an analysis of model 
performance by two possible sources of bias, age and race, we perform 
stratified analyses of NYUTron’s performance. We annotate the number of 
examples (N) and the readmission rate (p) for each evaluation. a, We stratify the 
temporal test based on nine bins of ages (0 to 90 years with bins of 10 year 
intervals). NYUTron performs best for patients who are 10 to 40 years old, and 
has declining performance by decile over the age of 40 years with the worst 

performance in the 80–90 years of age group. We observe that this isn’t an 
effect of sample size, the single largest sample is age 80–90, but likely reflects 
complexity and comorbidity burdens being disproportionately higher with 
advanced age. b, To test for potential dependencies and bias by race, we first 
identify the five most frequent races in the dataset (White, Other Race, Black, 
Chinese, Indian), then stratify the evaluation results by race. NYUTron 
performs best on Chinese patients and worst on Black patients with a mild 
variation in AUC across both groups.



Extended Data Fig. 7 | Detailed statistics of the comparison between 
language models and lace+xgb. a, A box plot with individual data points. For 
each model, 5 experiments were run using random seeds 0, 13, 24, 36, 42. The 
centerline of the box plot indicates the median. The upper line of the box 
indicates the first quantile. The lower line of the plot indicates the last quantile. 

The whisker extends to 1.5 times the interquartile length and the diamonds 
indicate outliers. b, A bar plot that shows the mean and standard deviation. The 
height of the bar indicates the mean across 5 experiments and the length of the 
black vertical line indicates the standard deviation.
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Extended Data Fig. 8 | See next page for caption.



Extended Data Fig. 8 | Additional information about readmission 
prediction. a, Visualization of readmission data split timelines. We visualize 
the random split, temporal split, and deployment split on a timeline to indicate 
this decision for model evaluation. The random split starts from January 2013 
and ends in May 2021 (inclusive), which is further split into a 80% train set, 10% 
validation set and a 10% test set. The temporal split (temporal test) starts from 
June 2021 and ends in December 2021, a time period from which no training 
samples were sampled from. The deployment data is necessarily sampled from 
the future as it is accrued prospectively as part of our single arm, non-
interventional clinical trial. b, NYUTron’s performance increases with more 
complete input notes. To attempt to estimate performance as a function of 
sequence length we sampled a subset of “long notes” from the temporal test 
set. Each note in this subset has no less than 400 words, or approximately 512 
tokens. We truncated these long notes to 100, 200, 300 and 400 words while 

keeping their readmission labels fixed in order to demonstrate the incremental 
gain in performance as we capture proportionally more information from each 
of these “long notes”. The dashed line is the AUC of all notes. This figure shows 
that processing more words from the possible input leads to a better evaluation 
performance and confirms that there is a clear potential for improving 
performance by increasing maximum sequence length. c,d NYUTron’s 
calibration curve for temporal test (c, number of evaluation examples is 
N = 53,916) and prospective deployment (d, number of evaluation examples is 
N = 29,286). As a reference, the orange line is the calibration curve of an ideally 
calibrated classifier. The blue line is NYUTron’s calibration curve. Currently we 
do not perform any additional calibration and choose the decision threshold 
based on the precision and recall on the temporal validation set. The predicted 
probability is normalized by the largest predicted probability. Overall the 
model is well calibrated to the 30-day readmission task.
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Extended Data Table 1 | Detailed statistics of datasets

We built a comprehensive pretraining dataset (NYU Notes) with two site-specific variants (NYU Notes - Manhattan/Brooklyn) as discussed in the Methods section. For readmission prediction, we 
also built a finetuning dataset (NYU Readmission) with two site-specific variants (NYU Readmission Manhattan/Brooklyn), one structured-data variant (NYU Readmission - LACE), and a deploy-
ment test set (NYU Readmission - Deployment) that was sampled in real-time as part of our prospective trial. To test the breadth of NYUTron’s applicability, we added 4 tasks (NYU Mortality, NYU 
Binned LOS, NYU Comorbidity, NYU Insurance denial) with their respective structured-data variant (NYU Mortality - SAPS2+APACHE2, NYU Binned LOS - Lisbon Portugal, NYU Insurance Denial - 
Claim forms). NYU Comorbidity has no structured-data variant because the task is to impute comorbidity index with the lack of structured icd codes. Finally, we have a Named Entity Recogni-
tion (NER) dataset for testing how well NYUTron generalizes to different clinical predictive tasks using non-NYU data.



Extended Data Table 2 | Sizes and pretrain corpora for LLMs

We test 6 types of LLMs with different model sizes and different pretraining corpora. We list out the various corporate here as well as model parameter counts to facilitate ease of comparison. 
We also note that one key distinction between web-wiki+bio+clinical and NYUTron, clinical is that the former was stripped of identifying information while the latter was not.
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