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B reast cancer risk models are used to evaluate and guide 
clinical considerations such as hereditary risk, supple-

mental screening, and risk-reducing medications (1). Risk 
models are also undergoing active investigation for broader 
management in the population, such as risk-based person-
alized screening (2,3) or capacity management (4). Several 
models have been developed to assess the risk for breast 
cancer in the general population, including Breast Can-
cer Risk Assessment Tool (Gail Model; 5), Breast Cancer 
Surveillance Consortium (BCSC; 6,7), and International 
Breast Cancer Intervention Study (Tyrer-Cuzick Risk 

Model; 8). These models include age, clinical factors (eg, 
family history of breast cancer, race and/or ethnicity, and 
previous breast biopsy with benign results), genetic factors, 
and mammographic breast density but have only moderate 
discrimination for predicting 5- or 10-year risk of breast 
cancer (area under the receiver operating characteristic 
curve [AUC] range, 0.62–0.66) (5–8).

Computer vision–based artificial intelligence (AI) mod-
els can potentially improve risk prediction beyond clinical 
risk factors. These models quantitatively extract imaging 
biomarkers that represent underlying pathophysiologic 

Background: Although several clinical breast cancer risk models are used to guide screening and prevention, they have only moderate 
discrimination.

Purpose: To compare selected existing mammography artificial intelligence (AI) algorithms and the Breast Cancer Surveillance 
Consortium (BCSC) risk model for prediction of 5-year risk.

Materials and Methods: This retrospective case-cohort study included data in women with a negative screening mammographic examination 
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0.62). AI algorithms had higher time-dependent AUCs than did BCSC, ranging from 0.63 to 0.67 (Bonferroni-adjusted P < .0016). 
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range, 0.66–0.68; Bonferroni-adjusted P < .0016).

Conclusion: When using a negative screening examination, AI algorithms performed better than the BCSC risk model for predicting 
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digital mammography) in 2016 at Kaiser Permanente Northern 
California (ie, the index mammogram) that was negative at fi-
nal imaging assessment. Specifically, screening mammographic 
examinations were selected if they were assessed with screening 
Breast Imaging Reporting and Data System (BI-RADS) (14) 
as category 1 or 2, or a screening BI-RADS 0 and diagnostic  
BI-RADS 1 or 2 in 90 days or less, or a screening BI-RADS 
0 and diagnostic BI-RADS 4 or 5 and radiologic-pathologic 
concordant benign biopsy in 90 days or less. Patients were 
excluded if they had a history of breast cancer or a high-
penetrance breast cancer susceptibility gene as defined by the 
National Comprehensive Cancer Network guidelines (15). A 
case-cohort study design was used, which is a hybrid of the 
cohort and case-control study designs and has the advantage 
of allowing direct unbiased estimate of cumulative incidence 
(or absolute risk) and analysis of multiple outcomes, similar 
to a cohort study (16). This study was approved by the Kaiser 
Permanente Northern California institutional review board for 
Health Insurance Portability and Accountability Act compli-
ance and followed the Strengthening the Reporting of Obser-
vational Studies in Epidemiology  guidelines (17,18).

Data Collection and Imaging Procedures
Screening mammographic examinations in 2016 were identified 
by Current Procedural Terminology examination code 77057. 
Incident breast cancer, detected either symptomatically or on a 
subsequent mammogram, was defined as pathology-confirmed 
invasive carcinoma or ductal carcinoma in situ. Cancers were 
confirmed by using the Kaiser Permanente Northern California 
Breast Cancer Tracking System (19) quality assurance program. 
This tracking system has a 99.8% concordance with the Kaiser 
Permanente Northern California tumor registry that reports to 
the National Cancer Institute Surveillance, Epidemiology, and 
End Results program, but identifies incident cancers more rap-
idly (within 1 month of diagnosis) while using manual verifica-
tion. Women were followed from their index mammogram to 
date of breast cancer diagnosis, death, health plan disenrollment 
(allowing up to a 3-month gap in enrollment), or the end of the 
study (August 31, 2021), whichever occurred first.

The full-field digital mammograms were evaluated in their 
archived processed form.

Deriving AI Risk Score from Screening Mammograms
AI scores were generated from five deep-learning computer  
vision algorithms that use screening mammograms as their in-
put and then produce patient-level predicted scores. Candidate  
algorithms were chosen from an ongoing institutional AI op-
erational evaluation. Further details on the AI algorithms and 
the underlying architecture are available in Appendix S1. Briefly, 
this study evaluated two academic algorithms freely available 
for research, Mirai (13) and Globally-Aware Multiple Instance 
Classifier (20), and three commercially available algorithms, 
MammoScreen (21), ProFound AI (22), and Mia (23). Because 
computer-aided detection or diagnosis algorithms themselves are 
trained at various time horizons between 3 months and 2 years, 
each algorithm’s trained time horizon and their ability to predict 
future risk up to 5 years were displayed. When any algorithm 

mechanisms and phenotypes (9). Breast density is the imag-
ing biomarker most commonly incorporated into clinical risk 
models, but recent advances in AI deep learning (10) provide 
the ability to extract hundreds to thousands of additional mam-
mographic features. However, most mammography-based AI 
algorithms have only been trained to assist radiologists by flag-
ging cancer visible at screening mammography (computer-aided 
diagnosis or computer-aided detection) and not to predict future 
risk several years after mammography with negative results (11). 
A few studies (12,13) have evaluated the ability of mammogra-
phy-trained AI algorithms to predict future risk of breast cancer, 
which demonstrated substantial improvements in risk predic-
tion versus clinical risk models alone. To our knowledge, it is 
unknown whether currently available computer-aided detection 
or diagnosis AI algorithms trained for shorter time horizons (ie, 
the time over which risk is assessed) and representing the major-
ity of mammography AI algorithms can also predict longer-term 
risk. The ability for computer-aided detection or diagnosis to 
provide personalized future risk prediction would expand the ap-
plications into the realm of breast cancer risk models.

This study used screening mammography negative for breast 
cancer at final assessment from a large community-based cohort in 
the United States to compare five commercial and academic mam-
mography AI algorithms with each other and with the BCSC clini-
cal model. This study also assessed whether combining the AI and  
BCSC risk models improved risk prediction compared with  
either model type alone.

Materials and Methods

Study Cohort and Design
This is a retrospective case-cohort study of women who had a bi-
lateral screening mammographic examination (two-dimensional 

Abbreviations
AI = artificial intelligence, AUC = area under the receiver operating 
characteristic curve, BCSC = Breast Cancer Surveillance Consortium, 
BI-RADS = Breast Imaging Reporting and Data System

Summary
Negative screening mammographic examinations were analyzed with 
five artificial intelligence (AI) algorithms; all predicted breast cancer 
risk to 5 years better than the Breast Cancer Surveillance Consortium 
(BCSC) clinical risk model, and combining AI and BCSC models 
further improved prediction.

Key Results
 ■ Five artificial intelligence (AI) algorithms were used to generate 
continuous risk scores from retrospectively acquired screen-
ing mammographic examinations negative for cancer in 18 019 
women.

 ■ AI predicted incident cancers at 0 to 5 years better than the Breast 
Cancer Surveillance Consortium (BCSC) clinical risk model (AI 
time-dependent area under the receiver operating characteristic 
curve [AUC] range, 0.63–0.67; BCSC time-dependent AUC, 
0.61; Bonferroni-adjusted P < .0016).

 ■ Combining AI algorithms with BCSC slightly improved the time-
dependent AUC versus AI alone (AI with BCSC time-dependent 
AUC range, 0.66–0.68; Bonferroni-adjusted P < .0016).
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failed to process an individual mammogram, the missing score 
was imputed using the algorithm’s specific overall median score 
(missing data by algorithm are in Table S1; evaluation by com-
plete scored mammograms is in Table S2).

The ability of the models to predict 5-year breast cancer risk 
was divided into three periods after the index screening mam-
mographic examination: interval cancer risk was defined as  
incident cancers diagnosed between 0 and 1 years, future cancer 
risk was defined as incident cancers diagnosed from at least 1 to 
5 years, and all cancer risk was defined as incident cancers diag-
nosed between 0 and 5 years.

BCSC Clinical Risk Score Generation
The BCSC clinical 5-year risk model version 2 (6,24) was used 
as the comparator for the AI models. The BCSC model predicts 
risk for women without a history of breast cancer or BRCA1/2 
mutation based on age, ethnicity, first-degree family history of 
breast cancer, prior benign breast biopsy, and mammographic 
breast density. For risk score generation, clinical data from at or 
before the first screening mammographic examination in 2016 

were obtained from the Kaiser Permanente 
Northern California electronic health record, 
regardless of prior membership in the Kaiser 
Permanente Northern California health sys-
tem. Breast density was based on the clini-
cal interpretation of the index mammogram 
using the BI-RADS classification system. 
Whereas the Breast Cancer Tracking Sys-
tem database prospectively classifies atypia 
and lobular carcinoma in situ, it does not 
distinguish proliferative benign pathology 
from otherwise benign pathology, so these 
outcomes were conservatively classified as 
nonproliferative lesions.

Statistical Analysis
Statistical software (R version 4.0.2, R 
Program for Statistical Computing; 25) 
was used for all statistical analyses (C.L.). 
All statistical tests were two sided, with a 
threshold for statistical significance using 
a Bonferroni correction of the significance 
level for the 30 tests performed for a thresh-
old α level of .05/30 = .0016. Therefore, 
estimated differences in AUCs with P < 
.0016 indicated statistical significance after 
accounting for multiple comparisons.

Kaplan-Meier was used to estimate the 
overall 5-year cumulative incidence of breast 
cancer within strata of each risk score (>90th 
percentile, middle 80 percentiles, and <10th 
percentile) as hypothetical thresholds for risk 
groups. Design weights were included for 
case-cohort sampling. Model performance 
was evaluated using the time-dependent 
AUC, for the dynamic definition of patients 
with or without breast cancer at any given 

time when handling time-to-event outcomes (26), and for cen-
soring and sampling distribution using inverse probability of 
censoring weights and case-cohort sampling (27). Correspond-
ing 95% CIs were obtained using bootstrapping with 1000 
bootstrap samples (28). To compare time-dependent AUC 
estimates from two separate risk scores, the difference in es-
timates and corresponding bootstrapped 95% CI was calcu-
lated. CIs that did not include 0 indicated that the difference 
in time-dependent AUC estimates was statistically significant 
(α < .05) (29).

A Cox model was fitted to predict 5-year risk by using the 
combined AI-predicted score and the BCSC score. The Cox 
models accounted for the case-cohort sampling with design 
weights and included both the AI score and BCSC score flexibly 
by using restricted cubic splines with four knots (30,31). Five-
fold cross-validation was used to estimate the time-dependent 
AUC estimator (27) and presented the average value across the 
five folds. Corresponding 95% CIs for the average cross-valida-
tion–time-dependent AUC were obtained through bootstrap-
ping with 1000 bootstrap samples. Time-dependent AUC was 

Figure 1: Patient selection flowchart. No imaging evidence of cancer: Screening examination Breast 
Imaging Reporting and Data System (BI-RADS) 1 or 2, or screening BI-RADS 0 and diagnostic BI-RADS 1 
or 2 in 90 days or fewer, or screening BI-RADS 0 and diagnostic BI-RADS 4 or 5 and benign biopsy in 90 
days or fewer.
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the outcome for comparison. Based on the 
number of patients with and without cancer, 
the statistical power for the smallest detectable 
improvement with the AI model would be .02 
compared with reference BCSC (AUC = .60), 
assuming 80% power, α level of .05, and two-
sided tests.

Similar analyses were performed in post 
hoc subgroups: patients with invasive can-
cer or ductal carcinoma in situ, patients with 
complete scores available across all models, pa-
tients with BI-RADS 1 or 2 results on screen-
ing mammograms, patients with BI-RADS 0 
results on screening mammograms, BI-RADS 
1 or 2 results at diagnostic imaging or biopsy, 
and mammograms acquired on equipment 
manufactured by Hologic or GE Healthcare.

This study assessed the 5-year calibration 
(ie, the ratio of expected values to observed 
values) of Mirai and BCSC risk within pre-
specified strata of 5-year risk based on thresh-
olds established by BCSC. The observed 
number of patients with cancer during the 
5-year study period was compared with the 
expected number of patients with cancer by 
calculating the total of the cumulative haz-
ard estimates over all individuals in the study 
(32). The ratio of observed to expected cases 
was reported with exact 95% CIs (33). The 
incidence rates (cases per 1000 person-years) 
and incident rate ratios with 95% CIs were 
calculated based on a Poisson distribution. 
All expected incidence estimates incorpo-
rated design weights that accounted for the 
case-cohort sampling.

Results

Characteristics of the Study Sample
Figure 1 shows the patient selection pro-
cess for the case-cohort design. Of 347 566 
women with a negative screening mammo-
graphic examination in 2016, 23 557 were 
excluded. Of 324 009 women who met 
eligibility criteria, a simple random cohort 
of 13 628 women (4.2%) including 193 
women with incident breast cancer was se-
lected for analyses. An additional 4391 pa-
tients from the complete cohort who were 
diagnosed with cancer within 5 years of the 
index mammography in 2016 were also included (4584 total 
patients; 100%). This sample size was based on the maxi-
mum cohort size feasible for AI algorithm evaluation with 
the resources available. Women younger than 50 years made 
up 23.3% (3170 of 13 628) of this group, and 51.1% (6970 
of 13 628) were non-Hispanic White women (Table 1). Me-
dian follow-up was 5.0 years (IQR, 4.7–5.3). Of the 13 435 

women in the subcohort who did not develop cancer, 12 226 
(91.9%) women were censored because of end of follow-
up period, 940 (7.0%) because of disenrollment, and 269 
(2.0%) because of death. Of the mammograms, 87.0% were 
acquired with Hologic units (11 856 of 13 628; Hologic) 
and 13.0% were acquired with GE units (1772 of 13 628;  
GE Healthcare).

Table 1: Cohort Characteristics

Parameter

Patients in  
Subcohort  
(n = 13 628)

Patients with 
Breast Cancer*  
(n = 4584)

All Eligible  
Patients  
(n = 324 009)

Age (y)
 <40 84 (1) 19 (< 1) 1991 (1)
 40–49 3086 (23) 713 (16) 73 331 (23)
 50–59 4694 (34) 1305 (28) 112 716 (35)
 60–69 4147 (30) 1777 (39) 97 746 (30)
 ≥70 1617 (12) 770 (17) 38 225 (12)
Race/ethnicity
 Asian or Pacific Islander 2557 (19) 861 (19) 60 732 (19)
 Black or non-Hispanic 975 (7) 327 (7) 23 513 (7)
 Hispanic 2350 (17) 561 (12) 56 440 (17)
 Multiracial 493 (4) 158 (3) 10 826 (3)
 Native American 51 (< 1) 18 (< 1) 1364 (< 1)
 White, non-Hispanic 6970 (51) 2643 (58) 166 014 (51)
 Missing 232 (2) 16 (< 1) 5120 (2)
No. of first-degree  

relatives with history  
of breast cancer

 0 11 920 (87) 3676 (80) 283 147 (87)
 1 1620 (12) 853 (19) 38 854 (12)
 ≥ 2 88 (1) 55 (1) 2008 (1)
No. previous benign  

breast biopsies
 0 12 871 (94) 4076 (89) 305 185 (94)
 ≥1 757 (6) 508 (11) 18 824 (6)
BI-RADS breast density
 Almost entirely fat 1324 (10) 244 (5) 30 499 (9)
 Scattered fibroglandular  

 densities
6314 (46) 1986 (43) 151 810 (47)

 Heterogeneously dense 5227 (38) 2083 (45) 123 572 (38)
 Extremely dense 702 (5) 231 (5) 16 420 (5)
 Missing 61 (< 1) 40 (1) 1708 (1)
Cancer type
 Invasive 166 (86) 3783 (83) 3783 (83)
 DCIS 27 (14) 801 (17) 801 (17)
Median follow-up  

interval (y)†
5.0 (4.7–5.3) 2.8 (2.0–4.1) 5.0 (4.7–5.3)

Median length of health 
care enrollment before 
index date (y) †

17.9 (9.6–19.4) 18.9 (10.7–19.5) 17.6 (9.2–19.4)

Note.—Unless otherwise indicated, data are numbers; data in parentheses are 
percentages. BI-RADS = Breast Imaging Reporting and Data System, DCIS = ductal 
carcinoma in situ.
* Includes cases within subcohort (n = 193) as well as cases outside subcohort (n = 4391).
† Data are medians, with IQRs in parentheses.
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Cumulative Incidence Rates of BCSC Clinical Risk Model and 
AI Algorithm Scores
The average cumulative incidence rate at 5 years was 30.4 per 
1000 person-years (95% CI: 28.1, 33.1) for women with a 
BCSC risk score greater than 90th percentile, 15.0 per 1000 
person-years (95% CI: 14.4, 15.6) for women with a BCSC risk 

score in the middle 80 percentiles, and 6.1 per 1000 person-
years (95% CI: 5.1, 7.2) for women with a BCSC score in the 
less than 10th percentile (Fig 2). The incidence rate ratio of 
greater than 90th percentile risk to less than 10th percentile risk 
was 5.5. Women with a BCSC risk greater than 90th percentile 
accounted for 20.0% (919 of 4584) of all cancers by 5 years, 

Figure 2: Cumulative risk of breast cancer by risk model type at 5 years. Kaplan-Meier curves for (A) the clinical Breast Cancer Surveillance Consortium (BCSC) risk model 
and for the mammography-trained artificial intelligence (AI) risk models (B) Mirai, (C) MammoScreen, (D) ProFound, (E) Mia, and (F) Globally-Aware Multiple Instance Clas-
sifier. Women with a BCSC risk greater than 90th percentile accounted for 21% of all cancers by 5 years, whereas women with less than 10th percentile risk accounted for 3% of 
all cancers. Women with AI risk greater than 90th percentile accounted for 24%–28% of all cancers by 5 years, whereas women with less than 10th percentile risk accounted for 
approximately 2%–5% of cancers across all AI algorithms. The blue line represents women with a risk score greater than 90th percentile, the orange line represents women with a 
risk score in the middle 80 percentile, and the gray line represents women with a risk score in the less than 10th percentile. Shading surrounding the line is the 95% CI.



Mammography AI Algorithms vs Clinical Risk Model for 5-year Risk of Breast Cancer

6 radiology.rsna.org ■ Radiology: Volume 307: Number 5—June 2023

whereas women with less than 10th 
percentile risk accounted for 3.2% 
(149 of 4584) of all cancers.

For AI algorithms, the average 
cumulative incidence rate at 5 years 
ranged from 34.9 to 41.3 per 1000 per-
son-years for women with a risk score 
greater than 90th percentile, 13.7 to 
14.5 per 1000 person-years for women 
with a risk score in the middle 80 per-
centiles, and 3.8 to 7.4 per 1000 per-
son-years for women with a risk score 
less than 10th percentile. The incidence 
rate ratio of the risk greater than 90th 
percentile to risk less than 10th per-
centile ranged between 5.8 and 11.7. 
Women with risk greater than 90th 
percentile accounted for 24%–28% of 
all cancers at 5 years, whereas women 
with less than 10th percentile risk ac-
counted for approximately 2%–5% of 
cancers across all AI algorithms. Ex-
amples of women who did and did not 
develop cancer within 5 years of follow-
up are shown in Figure 3.

Discrimination and Calibration of 
BCSC Clinical Risk Model and AI 
Algorithm Scores
When evaluating discrimination for in-
terval cancer risk (Table 2), BCSC dem-
onstrated a time-dependent AUC of 0.62 (95% CI: 0.59, 0.66), 
whereas the AI algorithms’ time-dependent AUCs ranged from 
0.67 to 0.71, with only Mammoscreen (time-dependent AUC, 
0.71; 95% CI: 0.68, 0.75) and Mia (time-dependent AUC, 0.71; 
95% CI: 0.67, 0.74) significantly higher than BCSC (Bonferroni-
adjusted P < .0016). For the 5-year future cancer risk, BCSC dem-
onstrated a time-dependent AUC of 0.61 (95% CI: 0.60, 0.62), 
whereas the AI algorithm time-dependent AUCs ranged from 
0.63 to 0.67, with all algorithms but Mia significantly higher than 
BCSC (Bonferroni-adjusted P < .0016). For all cancer risk, BCSC 
demonstrated a time-dependent AUC of 0.61 (95% CI: 0.60, 
0.62), whereas the AI algorithms’ time-dependent AUCs ranged 
from 0.63 to 0.67, all significantly higher than BCSC (Bonfer-
roni-adjusted P < .0016).

The combined AI and BCSC models’ time-dependent AUCs 
for interval cancer risk ranged from 0.67 to 0.73 (Table 3), al-
though none were significantly higher than the corresponding AI 
algorithm alone when using Bonferroni-adjusted P values. The 
combined models’ time-dependent AUCs for 5-year future can-
cer risk ranged from 0.66 to 0.68 and were significantly higher 
than all individual AI algorithms. Similarly, the combined mod-
els’ time-dependent AUCs for 5-year all-cancer risk ranged from 
0.66 to 0.68 and were higher than all individual AI algorithms.

Additional subgroup analyses (Tables S2–S8) demonstrated 
comparable performance to the primary results shown in Table 
2 for complete scores available across all models (Table S2), in 

women with invasive breast cancer (Table S3), BI-RADS 1 or 
2 only on screening mammograms (Table S5), and on mam-
mograms acquired by using Hologic equipment (Table S7). Per-
formance was mixed for some algorithms in women with ductal 
carcinoma in situ (Table S4), mammograms acquired on GE 
equipment only (Table S6), and in women with BI-RADS 0 on 
screening mammograms (Table S8), although interpretation was 
limited because of small sample size.

The 5-year calibration of the BCSC ranged from 1.02 to 
1.08 depending on the prespecified BCSC risk threshold ranges, 
whereas that of the Mirai algorithm ranged from 0.49 to 0.76 
(Table S9). Absolute differences in time-dependent AUC were 
also derived (Table S10 representing Table 2, and Table S11 rep-
resenting Table 3).

Discussion
We tested several mammography artificial intelligence (AI) mod-
els, many of which have been trained for shorter time horizons 
(ie, time over which risk is assessed), to determine whether they 
can predict future risk better than the commonly used Breast 
Cancer Surveillance Consortium (BCSC) clinical risk model 
(6,7) when used either alone or in combination with the BCSC 
model. AI algorithms showed a significantly higher discrimina-
tion of breast cancer risk than did the BCSC clinical risk model 
for predicting 5-year risk (AI time-dependent area under the re-
ceiver operating characteristic curve [AUC] range, 0.63–0.67, 

Figure 3:  Right medial lateral oblique (RMLO) screening mammograms show negative results from 2016 in  
(A) a 73-year-old woman with Mirai artificial intelligence (AI) risk score with more than 90th percentile risk who 
developed right breast cancer in 2021 at 5 years of follow-up and (B) a 73-year-old woman with Mirai AI risk score 
with less than 10th percentile risk who did not develop cancer at 5 years after 5 years of follow-up.
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vs BCSC time-dependent AUC, 0.61; Bonferroni-adjusted P < 
.0016). This difference was most pronounced for interval cancer 
risk for certain algorithms, which highlights the strength of AI to 
identify missed or aggressive interval cancers. Furthermore, we 
demonstrated that AI algorithms trained for short time horizons 
can predict future risk of cancer up to 5 years when no cancer is 
clinically detected at mammography. As expected, performance 
improved for algorithms trained for longer time horizons. Com-
bining BCSC and AI further improves risk prediction versus AI 
alone and decreases the differences in future risk performance 
across AI algorithms (for all cancer risk: time-dependent AUC 
range, 0.66–0.68; Bonferroni-adjusted P < .0016).

Mammography AI algorithms provide an approach for 
improving breast cancer risk prediction beyond clinical vari-
ables such as age, family history, or the traditional imaging 
risk biomarker of breast density. The absolute increase in the 
AUC for the best mammography AI relative to BCSC was 
0.09 for interval cancer risk and 0.06 for overall 5-year risk, 
a substantial and clinically meaningful improvement. The 
overall performance improvement remained when restricting 
the analysis to invasive cancer only. In order for an AI model 
to achieve an AUC of approximately 0.7, the model must 
have predictors that are two to three times more informa-
tive than clinical models such as the BCSC with an AUC 
of approximately 0.6 (1). Although we focus on AUC as an 

accepted metric to compare general performance of risk mod-
els, a further approach to understand clinical significance is 
provided by our estimates for cancer yield or incidence rate 
ratios using hypothetical percentile cutoffs. For example, for 
a high-risk group defined at greater than 90th percentile risk, 
AI predicted up to 28% of cancers versus 21% with BCSC. 
However, because of the numerous use cases in which risk 
models are applied, clinical impact ultimately depends on the 
context and specific approach in which risk stratification is 
implemented. Continued strong predictive performance at 
1–5 years is surprising and suggests that AI is not only iden-
tifying missed cancers but may identify breast tissue features 
that help predict future cancer development. This is analo-
gous to high breast density independently predicting both 
tissue masking and future cancer risk (34).

We evaluated risk at different time horizons because each has 
distinct clinical implications. Certain AI algorithms excelled at 
predicting patients at high risk of interval cancer, which are often 
aggressive cancers (34,35) and may require a second reading of 
mammograms, supplementary screening (eg, with breast MRI), 
or short-interval follow-up. We also found AI algorithms pre-
dicted future risk, which may lead to more frequent and inten-
sive screening or risk counseling for primary prevention. Overall, 
algorithms maintained robust performance in subgroup analyses 
for invasive cancer only.

Table 2: Comparative Time-Dependent AUC Performance of Combined AI and BCSC Clinical Risk Model Using Negative 
Index Screening Mammography for Prediction of Invasive Cancer and DCIS

Model*

Model  
Training  
Time Horizon 
Range (y)

Interval  
Cancer  
Risk 0–1 Years  
(n = 259)

Future Cancer Risk (Excluding Interval Cancers at 0 to 1 Year)
All Cancer 
Risk 0–5 Years  
(n = 4348)

>1–2 Years  
(n = 869)

>1–3 Years  
(n = 2190)

>1–4 Years  
(n = 3033)

>1–5 Years  
(n = 4089)

BCSC  
(Clinical)

0.5–5 0.62  
(0.59, 0.66)

0.62  
(0.60, 0.63)

0.63  
(0.61, 0.64)

0.62  
(0.60, 0.63)

0.61  
(0.60, 0.62)

0.61  
(0.60, 0.62)

Mirai  
(MIT, AI)

0–5 0.68  
(0.65, 0.72) 
[.002]†

0.69  
(0.67, 0.70) 
[<.001]

0.69  
(0.68, 0.70) 
[<.001]

0.69  
(0.68, 0.70) 
[<.001]

0.67  
(0.66, 0.68) 
[<.001]

0.67  
(0.66, 0.68) 
[<.001]

MammoScreen 
Therapixel, AI)

0–2 0.71  
(0.68, 0.75) 
[<.001]

0.69  
(0.67, 0.71) 
[<.001]

0.68  
(0.67, 0.70) 
[<.001]

0.67  
(0.66, 0.68) 
[<.001]

0.65  
(0.64, 0.66) 
[<.001]

0.65  
(0.64, 0.66) 
[<.001]

ProFound  
AI (iCAD, AI)

0–2 0.67  
(0.63, 0.70)  
[.02]†

0.67  
(0.65, 0.69) 
[<.001]

0.68  
(0.67, 0.69) 
[.001]

0.66  
(0.65, 0.67) 
[<.001]

0.65  
(0.64, 0.66) 
[<.001]

0.65  
(0.64, 0.66) 
[<.001]

Mia  
(Kheiron, AI)

0–1 0.71  
(0.67, 0.74)  
[<.001]

0.66  
(0.64, 0.68) 
[<.001]

0.66  
(0.64, 0.67) 
[<.001]

0.64  
(0.63, 0.65) 
[<.001]

0.63  
(0.62, 0.64) 
[.002]†

0.63  
(0.62, 0.64) 
[<.001]

GMIC  
(NYU, AI)

0–0.25 0.68  
(0.64, 0.71)  
[.01]†

0.66  
(0.64, 0.68) 
[<.001]

0.67  
(0.66, 0.68) 
[<.001]

0.66  
(0.65, 0.67) 
[<.001]

0.64  
(0.63, 0.65) 
[<.001]

0.64  
(0.63, 0.65) 
[<.001]

Note.—Data are time-varying areas under the receiver operating characteristic curve (AUCs), with 95% CIs in parentheses. Data in 
brackets are P values. Unless otherwise indicated, P values are Bonferroni corrected (P < .0016), accounting for 30 tests, compared with 
the Breast Cancer Surveillance Consortium (BCSC) clinical risk model for the same time horizon. Missing data were imputed with cohort 
median value for each model. Further details are in Appendix S1. AI = artificial intelligence, DCIS = ductal carcinoma in situ, GMIC = 
Globally-aware Multiple Instance Classifier, MIT = Massachusetts Institute of Technology, NYU = New York University.
* Information in parentheses is model manufacturer and type of model (ie, clinical or AI).
† Not meeting Bonferroni-corrected statistical significance.
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The BCSC model prediction was originally built using U.S. 
national incidence rates from the Surveillance, Epidemiology, 
and End Results Program, and the predictions remained well 
calibrated with outcomes using our cohort, suggesting that our 
study population and results are similarly generalizable. How-
ever, the Mirai model (the only model that generated absolute 
risk estimates) overestimated cancer risk by a factor of two across 
all risk strata (observed to expected ratios of 0.49–0.76; Table 
S9). This is likely because Mirai was originally calibrated for both 
diagnostic risk (ie, cancer detected on the index mammogram) 
and future risk. Although model calibration does not affect the 
observed discriminative performance, calibration is critical when 
clinical decisions are based on prespecified risk thresholds. At the 
same time, AI models trained to predict specific thresholds can 
be recalibrated to support these decisions.

Beyond improved performance, mammography-based AI risk 
models provide practical advantages versus traditional clinical 
risk models. AI uses a single data source (the screening mammo-
graphic examination) that is available for most women in whom 
breast cancer risk prediction is relevant, enabling risk scores to be 
generated consistently and efficiently across a large population. 
Mammography AI risk models overcome certain barriers for risk 
models such as time and cost for combining multiple data ele-
ments from potentially different sources, as well as dependence 
on patient-reported history and susceptibility to missing data or 
recall bias. However, mammography AI risk models are limited 
to women who have undergone mammography. Therefore, these 
models cannot inform decisions regarding when women should 

start screening. Moreover, mammography AI risk models also 
have potential costs (eg, software or hardware) and other tech-
nical and workflow considerations for implementation. Some 
breast imaging practices may already incorporate computer-
aided detection AI, and the generated score may simultaneously 
be used for future risk stratification. Before AI is applied, it 
should be evaluated in the local patient populations for validity 
and potential hidden biases or disparities (36).

Our study had limitations. It was unable to evaluate all 
existing mammography AI algorithms, which are numerous 
(11,37) and may have produced different results than the five 
algorithms we evaluated. However, we provided a robust sample 
of one-third of the U.S. Food and Drug Administration– and 
Conformité Européene–cleared commercial algorithms and 
well-known open-source algorithms. We were also unable to 
assess the extent to which family history was missing. However, 
the prevalence of family history was comparable to national 
estimates (7), suggesting reasonably complete ascertainment. 
Thus, our estimated BCSC AUC was likely valid and was in-
deed similar to previously published studies (38,39). Previously 
reported (13,40) Mirai algorithm performances were higher 
than those in our results, but this was because those studies 
evaluated combined diagnostic and future risk performance.

In conclusion, mammography artificial intelligence (AI) al-
gorithms provided prediction of breast cancer risk to 5 years 
that was better than the Breast Cancer Surveillance Consortium 
(BCSC) clinical risk model, and the combination of AI and 
BCSC models further improved prediction. Our results imply 

Table 3: Comparative Time-Dependent AUC Performance of Combined AI and BCSC Clinical Risk Models Using Negative 
Index Screening Mammography

Model

Model  
Training  
Time Horizon 
Range (y)

Interval  
Cancer Risk 
0–1 Year  
(n = 259)

Future Cancer Risk (Excluding Interval Cancers at 0 to 1 Year)
All Cancer Risk 
0–5 Years  
(n = 4348)

>1–2 Years  
(n = 869)

>1–3 Years  
(n = 2190)

>1–4 Years  
(n = 3033)

>1–5 Years  
(n = 4089)

BCSC and  
Mirai

0–5 0.69  
(0.66, 0.72) 
[.04]*

0.70  
(0.68, 0.72) 
[<.001]

0.70  
(0.69, 0.71) 
[<.001]

0.70  
(0.69, 0.71) 
[<.001]

0.68  
(0.67, 0.69) 
[<.001]

0.68  
(0.67, 0.69) 
[<.001]

BCSC and 
MammoScreen

0–2 0.73  
(0.70, 0.76) 
[.09]*

0.71  
(0.69, 0.73) 
[<.001]

0.71  
(0.69, 0.72) 
[<.001]

0.69  
(0.68, 0.70) 
[<.001]

0.67  
(0.66, 0.68) 
[<.001]

0.68  
(0.67, 0.69) 
[<.001]

BCSC and 
ProFound AI

0–2 0.67  
(0.64, 0.71) 
[.14]*

0.68  
(0.66, 0.70) 
[.05]*

0.69  
(0.67, 0.70) 
[.009]*

0.67  
(0.66, 0.68) 
[<.001]

0.66  
(0.65, 0.67) 
[.001]

0.66  
(0.65, 0.67) 
[.001]

BCSC and  
Mia

0–1 0.72  
(0.69, 0.75) 
[.13]*

0.69  
(0.68, 0.71) 
[<.001]

0.69  
(0.68, 0.70) 
[<.001]

0.68  
(0.66, 0.69) 
[<.001]

0.66  
(0.65, 0.67) 
[<.001]

0.66  
(0.66, 0.67) 
<.001]

BCSC and  
GMIC

0–0.25 0.69  
(0.66, 0.72) 
[.03]*

0.69  
(0.67, 0.71) 
[<.001]

0.70  
(0.68, 0.71) 
[<.001]

0.68  
(0.67, 0.69) 
[<.001]

0.67  
(0.66, 0.67) 
[<.001]

0.67  
(0.66, 0.68) 
[<.001]

Note.—Data are presented as time-varying areas under the receiver operating characteristic curve (AUCs), with 95% CIs in parentheses. 
Data in brackets are P values. Unless otherwise indicated, P values are Bonferroni corrected (P < .0016), accounting for 30 tests, compared 
with the corresponding artificial intelligence (AI)-only model (Table 2) for the same time horizon. Combined models were fit using restricted 
cubic splines. AI = artificial intelligence, BCSC = Breast Cancer Surveillance Consortium, GMIC = Globally-Aware Multiple Instance 
Classifier.
* Not meeting Bonferroni-corrected statistical significance.
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that mammography AI algorithms alone may provide a clini-
cally meaningful improvement compared with current clinical 
risk models at early time horizons (ie, time during which risk 
is assessed), with further improvements in prediction when 
AI and clinical risk models are combined. Although AI algo-
rithm performance declines with longer time horizons, most of 
the algorithms evaluated have not yet been trained to predict  
longer-term outcomes, suggesting a rich opportunity for fur-
ther improvement. Evaluating a larger sample of the numer-
ous AI mammography algorithms that are available remains 
for future efforts (11,37), although we examined multiple U.S. 
Food and Drug Administration– and Conformité Européene–
cleared commercial algorithms and well-known open-source 
algorithms. Moreover, AI provides a powerful way to stratify 
women for clinical considerations that necessitate shorter time 
horizons such as risk-based screening and supplemental imag-
ing. The impact of AI models on clinical decisions requiring 
risk prediction beyond 5 years requires further study in cohorts 
with longer follow-up.
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